
Benjamin Steinwender, MSc

A Distributed Controller
Network for Modular Power

Stress Tests

D I S S E R T A T I O N

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt
Fakultät für Technische Wissenschaften

Betreuer Prof. Dr. Wilfried Elmenreich
Universität Alpen-Adria-Universität Klagenfurt

Institut Vernetzte und Eingebettete Systeme

2. Begutachter Prof. Dr. Andreas Steininger
Universität Technische Universität Wien

Institut Technische Informatik

Industriebetreuer Dr. Michael Glavanovics
Firma KAI GmbH - Kompetenzzentrum für Automobil-

und Industrie-Elektronik

Klagenfurt, Juni 2016

Affidavit

I hereby declare in lieu of an oath that

• the submitted academic work is entirely my own work and that no auxiliary
materials have been used other than those indicated,

• I have fully disclosed all assistance received from third parties during the process
of writing the work, including any significant advice from supervisors,

• any contents taken from the works of third parties or my own works that have
been included either literally or in spirit have been appropriately marked and
the respective source of the information has been clearly identified with precise
bibliographical references (e.g. in footnotes),

• to date, I have not submitted this work to an examining authority either in
Austria or abroad and that

• the digital version of the work submitted for the purpose of plagiarism assessment
is fully consistent with the printed version.

I am aware that a declaration contrary to the facts will have legal consequences.

Benjamin Steinwender, MSc Klagenfurt, am 10. Juni 2016

III

Acknowledgments

Completing a PhD thesis cannot be done without the support of several people.

First of all, I want to thank Prof. Wilfried Elmenreich for guiding me in the subject
and providing numerous fruitful discussions. The pointers to investigate several topics
are greatly acknowledged.

This thesis was part of a larger research project – Enhanced Materials, Methods
& Applications for Power devices and Systems – carried out at Kompetenzzentrum
Automobil- und Industrie-Elektronik (KAI) in cooperation with Infineon Technologies
Austria1. Therefore, I would like to thank Josef Fugger and Michael Glavanovics for
offering me this topic. Michael, being my industrial supervisor, also helped me to
break down the industry requirements into understandable scientific terms for this
project.

A special thanks goes to my fellow colleagues: Sascha Einspieler, who helped me
creating the HTOL prototype application in his Master’s Thesis and implementing the
majority of the microcontroller firmware. Gerald Palatin carried out his Bachelor’s
Thesis and Master’s Thesis projects partly under my supervision. Klaus Plankensteiner
developed the Test Plan Builder application in course of his Master’s Thesis project.
Sergei Bauer helped me implementing parts of the host software. Yevhen Nikitin, who
helps us porting the microcontroller firmware to a new embedded target.

Many of the investigations presented in this thesis would not have been possible
without the help from the hardware team: Roland, Sybille, Alexander and Markus.
Together, we created the prototype schematics, PCB layouts and they helped with
the debugging, so I could focus on the theoretical work. As a result, I provided them
the test system architecture and software tools to speed up the development of their
test applications.

Finally, I would like to express my gratitude towards my family and friends, who
always supported me and encouraged me to pursue this project. Thank you for your
mental support!

1This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No.
854247) and the Carinthian Economic Promotion Fund (KWF, contract KWF-1521/28101/40388).

V

Kurzfassung

Das Feststellen der Zuverlässigkeit von Leistungshalbleitern wird von Abnehmern
und entsprechenden Zuverlässigkeitsstandards (JESD22 und AEC-Q100) vorge-

schrieben. Konventionelle Testsysteme bieten lediglich fix definierte Stresspulse für
eine große Anzahl an getesteten Bauteilen in einem Klimaschrank an. Üblicherweise
wird jedoch auf das Zurücklesen von Statusinformationen oder Messdaten während des
Testablaufs verzichtet, da dies einen zu großen Aufwand in der Verkabelung bedeutet.
Vorhergehende Bestrebungen haben bereits erfolgreich diese Messdaten und Statusin-
formationen erfasst. Dabei mussten jedoch Einschränkungen bei der Flexibilität des
Testsystems in Kauf genommen werden.

Die Architektur des in dieser Arbeit vorgestellten Zuverlässigkeitstestsystems präsen-
tiert einen neuen, modularen Ansatz. Durch die Verfügbarkeit von Mikrocontrollern
für den automobilen Temperaturbereich (bis 125 ◦C) kann ein kleines, mit einer
Kommunikationsschnittstelle ausgestattetes Steuermodul in der Nähe des getesteten
Bauteils innerhalb der Klimakammer platziert werden. Die Steuersignale und die
Messleitungen sind dadurch verkürzt und bieten eine verbesserte Signalqualität. Die
Mikrocontroller verwenden die Kommunikationsschnittstelle zur Kommunikation mit
einem Laborrechner. Dieser Hauptrechner verteilt die Testvorschriften an die einzelnen
Steuermodule und synchronisiert deren ausgeführten Aktionen. Außerdem steuert der
Hauptrechner zusätzlich angeschlossene Laborgeräte, visualisiert und speichert die
gemessenen Daten.

Die Testvorschriften der Steuermodule können flexibel erstellt werden, ohne dass
die Basissoftware dieser Module neu übersetzt und aufgespielt werden muss. Die
Testansteuerung basiert auf dem Modell endlicher Zustandsautomaten. Im Ruhemodus
kann das Modell durch ein anderes ausgetauscht werden. Um die zu testenden Bauteile
anzusteuern und zu messen, wird der Einsatz der Skriptsprache Lua vorgeschlagen.
Die Testvorschriften werden mit dem Test Plan Builder erstellt, welcher über die
Möglichkeiten der verwendeten Mikrocontrollermodule und der angebotenen Lua
Programmschnittstelle Bescheid weiß. Die fertige Testvorschrift wird mittels der
Kommunikationsschnittstelle an das Steuermodul geschickt.

Drei verschiedene Testapplikationen demonstrieren die Einsatzflexibilität und Leis-
tungsfähigkeit des neuen, modularen Testsystems.

VII

Abstract

Reliability testing of power semiconductor devices is required by customers and
reliability standards like the JESD22 and AEC-Q100. Conventional test systems

feature the application of fixed stress patterns for a large amount of devices in an
environmental chamber at the same time. However, reading status information or
acquisition of analog measurements is usually not performed due to the missing return
signal interface. Previous efforts have already succeeded at providing these necessary
measurement capabilities, although at the cost of complexity of the test setup.

The reliability test system architecture in this thesis presents a new, modular
test system approach. Due the availability of microcontrollers for the automotive
temperature range (up to 125 ◦C), a small networked controller module can be placed
close to the tested device inside the environmental chamber. Therefore, the stimuli
and measurement signal lines are local and the signal quality is improved. In order
to provide the required flexibility, the microcontrollers use a serial bus interface
to communicate with a host computer. The host distributes the test programs to
the control modules and synchronizes their actions. Furthermore, the host is used
for controlling externally connected instruments as well as visualizing and storing
measurement data.

The test procedure for individual devices can be created without the need to change
and re-compile the microcontroller firmware. The test control is based on the finite
state machine model. The model can be changed when the controller is in idle state.
Furthermore, the Lua script interpreter is proposed to control and measure the tested
devices through the microcontroller periphery. To create the test programs for this
modular test system, the Test Plan Builder tool is provided. It has knowledge about
the configuration of the used hardware targets and the Lua functions to help the users
design their test application. The test plan is transferred to the microcontrollers via
the communication channel.

Three different test application examples demonstrate the versatility and perfor-
mance of the new modular test system.

IX

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Background . 4
1.3 Evolution of Semiconductor Life Test Systems 4

1.3.1 HTOL . 4
1.3.2 ACUTE / ARCTIS . 5
1.3.3 Distributed Measurement Systems 6
1.3.4 MoPS . 6

1.4 Requirements . 7
1.5 Structure of the Thesis . 8

2 Concepts & Related Work 9
2.1 Industrial Communication . 10

2.1.1 PROFIBUS . 11
2.1.2 CAN . 11
2.1.3 Ethernet . 14
2.1.4 EtherCAT . 17

2.2 Microcontrollers . 18
2.3 Programming Languages . 19

2.3.1 Code Interpreter . 19
2.3.2 LabVIEW . 22
2.3.3 Graphviz . 23

2.4 Markup Languages for Representing Test Configurations 23
2.4.1 INI File . 24
2.4.2 XML . 24
2.4.3 JSON . 26

2.5 Software Deployment Strategies . 27
2.5.1 Compile-Flash-Cycle . 27
2.5.2 Boot Loader . 27

2.6 Chapter Summary . 28

3 The MoPS Distributed System 29
3.1 Host Layer . 32

3.1.1 Software Architecture for MoPS 33
3.1.2 MoPS Tiny Host . 36

3.2 Communication Channel . 37
3.2.1 Selection . 37

XI

Contents

3.2.2 CAN-based Interface . 38
3.2.3 Ethernet-based Interface . 41

3.3 Distributed Control & Sense Node . 47
3.3.1 SmartMoPS . 48
3.3.2 HTOL Node Board . 49
3.3.3 DC-Converter Stress Board . 51
3.3.4 MicroMoPS . 53

3.4 The MoPS-CORE Microcontroller Firmware 55
3.4.1 Lua Interpreter . 56
3.4.2 Hardware Interaction . 57
3.4.3 Background Routines . 58
3.4.4 Electronic Data Sheet . 59

3.5 Peripheral Modules . 60
3.6 Chapter Summary . 62

4 System Configuration & Programming 63
4.1 Configuration Options . 64

4.1.1 JSON Format Enhancements 64
4.1.2 SAM Configuration . 65
4.1.3 Configuring the MoPS-CORE Firmware 67
4.1.4 DAVE MoPS-CORE App . 71

4.2 Test Plan Definition . 71
4.2.1 Test Plan Model . 72
4.2.2 Test Plan File Structure . 76
4.2.3 Test Plan Transformation & Transfer 77

4.3 System Integration . 78
4.3.1 Communicating State Machines 78
4.3.2 Test Plan Builder . 79

4.4 Software & Documentation Deployment 81
4.5 Chapter Summary . 83

5 Prototype Implementations 85
5.1 Test Plan Generation Work Flow . 86
5.2 Test Execution . 87

5.2.1 Lua Test Code . 88
5.2.2 MoPS Lua RPC Library . 90
5.2.3 FSM Visualization . 91
5.2.4 Measurement Data Acquisition 92
5.2.5 Instrument Control . 94

XII

Contents

5.3 Power Factor Correction Boost Converter 95
5.3.1 Static Load Test . 96
5.3.2 Intermittent Load Test . 98

5.4 Point-of-Load Converter . 100
5.4.1 Static Load Test . 101
5.4.2 Dynamic Load Test . 101

5.5 MicroMoPS Test . 102
5.5.1 Test Procedure . 102

5.6 Chapter Summary . 103

6 Results & Discussion 105
6.1 Results . 105

6.1.1 Prototype Test Applications Summary 106
6.2 Discussion . 107

6.2.1 Usability . 107
6.2.2 Host Performance . 108
6.2.3 Microcontroller Performance 108
6.2.4 Lua Host Library . 109
6.2.5 Large Test Plans . 109
6.2.6 Measurement Data Acquisition 109

7 Conclusion & Outlook 111
7.1 Conclusion . 111
7.2 Outlook . 112

Bibliography 115

Glossary 125

Acronyms 127

XIII

List of Figures

1.1 Components of a Stress Test System 2
1.2 HTOL System Architecture . 4
1.3 ACUTE System Architecture . 5
1.4 MoPS System Architecture . 6

2.1 CAN message format . 12
2.2 Ethernet frame . 15

3.1 Modular Power Stress test architecture 30
3.2 Software Architecture for MoPS . 33
3.3 Software Architecture for MoPS GUI 34
3.4 SAM Test Actor . 35
3.5 MoPS Tiny Host . 37
3.6 MoPS Setup using CAN Interface . 38
3.7 Customized CAN ID format . 39
3.8 SmartMoPS – Intelligent Test Substrate 48
3.9 HTOL Controller Board . 50
3.10 DC-Converter Board . 51
3.11 MicroMoPS Hardware Target . 53

4.1 Accessing a physical pin through Lua 68
4.2 Simple controller state machine . 72
4.3 FSM model comparison . 74
4.4 Test plan structure . 76
4.5 Host to Node FSM synchronization . 79
4.6 Test Plan Builder . 80
4.7 Distribution server structure . 82

5.1 MoPS test procedure work flow . 86
5.2 Interaction with the Lua RPC library 91
5.3 Graphviz rendered image . 91
5.4 Analog signal path . 92
5.5 Analog gain model for a MoPS module 93
5.6 Simplified PFC boost converter application circuit 96
5.7 PFC boost converter sample start-up routine 97
5.8 PFC test plan FSM created in TP-Builder 98
5.9 PFC intermittent load test . 99

XV

List of Figures

5.10 PFC intermittent microcontroller test plan 100
5.11 PoL test intermittent load profile . 102
5.12 MicroMoPS test setup . 103

6.1 PFC test measurements . 107
6.2 Analog data acquisition . 110

XVI

List of Tables

3.1 Example Node IP addresses . 43
3.2 MoPS Ethernet message fields . 43
3.2 MoPS Ethernet message fields . 44
3.3 MoPS-CORE Lua modules . 57
3.4 MoPS-CORE Lua classes . 58

4.1 State transition table using 3-tuples 74

XVII

List of Listings

2.1 Lua C-API Example . 21
2.2 Graphviz dot script for the FSM display 23
2.3 INI example . 24
2.4 XML example file . 25
2.5 XML Schema example . 25
2.6 JSON example . 26
3.1 MoPS-CORE main loop . 55
3.2 Accessing a GPIO class module instance 57
3.3 Non-blocking example of AI module 58
3.4 Blocking example of SPI module . 59
4.1 SAM tools configuration . 65
4.2 SAM instruments configuration . 66
4.3 The DAVE digital pin description . 69
4.4 The MoPS-CORE digital pin to name mapping 69
4.5 The MoPS-CORE digital pin Lua constructor 70
5.1 Lua main loop for SAM . 89
5.2 Analog measurement comparison . 92
5.3 Intermittent load test (partial host script) 99

XIX

1
Introduction

Life is like riding a bicycle.
To keep your balance
you must keep moving.

(Albert Einstein)

Contents
1.1 Motivation . 2
1.2 Background . 4
1.3 Evolution of Semiconductor Life Test Systems 4

1.3.1 HTOL . 4
1.3.2 ACUTE / ARCTIS . 5
1.3.3 Distributed Measurement Systems 6
1.3.4 MoPS . 6

1.4 Requirements . 7
1.5 Structure of the Thesis . 8

Before production release of power semiconductors, standards mandate the ex-
ecution of qualification tests [1, 2]. As indicated by Figure 1.1, multiple Devices

Under Test (DUTs) are subjected to electrical stress patterns. Multiple semiconduc-
tor failure modes are known, where the majority of them are highly temperature
dependent [3]. Therefore, the DUTs are placed inside an environmental chamber to
be tested at different ambient temperatures. Control and Data AcQuisition (DAQ)
systems are required to apply defined stress patterns (CTRL – control) to the DUTs
and to measure (MSR) responses. A host system may collect these data and store it.
Due to the variety of different products tested, the re-use of existing components is
limited.

This thesis introduces new concepts for modular, flexible and configurable power
semiconductor life testing. These concepts are based on individual intelligent driving,
control and protection modules. The modules are interconnected by local and global
serial bus structures for the exchange of data, test parameters and timing information.

1

1 Introduction

Host
System

Control
& DAQ

Laboratory – 25 ◦C Environmental chamber – cold / hot

DUT DUT DUT
CTRL

MSR

Figure 1.1: Components of a Stress Test System

The research questions answered within this thesis are:

• Can a modular, distributed test system be designed so that it is superior in
terms of flexibility to a centralized system?

• Can the modular test system still be configured and programmed in such a way
that it can easily be operated in real-life test laboratories?

1.1 Motivation

To develop a semiconductor life test for qualification and reliability testing these days
requires tremendous effort. Typically, Commercial off-the-shelf (COTS) hardware in
form of rack-based PCI eXtensions for Instrumentation (PXI) systems and interface
cards is used. A custom software to handle the requirements is designed covering the
individual requirements. In terms of re-usability, software components may be applied
to similar projects. However, the system itself will be stand-alone and upgrading
the system usually requires buying new interface cards and creating new software to
satisfy the updated test requirements.

The AEC Q100 standard [1] describes the reliability qualification testing procedures
required by the automotive industry. In a similar way, the JESD22 family of the
JEDEC standards specifies the test methods for general industrial and consumer
semiconductor applications [2]. The basic description of the test setup requires a
specific number of DUTs to be tested. At intermediate time points, samples need to
be removed from the test setup to be measured at specific Automated Test Equipment
(ATE) systems. In situ monitoring of the devices is not required by standards. However,
automated measurements during the stress testing reduce manual intervention during
the test and, therefore, prevent possible human mistakes (e.g. mixing up samples)
during this step.

2

1.1 Motivation

During qualification testing, the requester of such a test would expect no device to
fail in order to pass qualification. However, if failure data is not known, a reliability
assessment is not possible. For that reason, end-of-life testing is typically performed
beforehand at increased stress levels. Based on the obtained data, the lifetime can be
predicted based on statistical models [4–6]. It may happen that the stress level is too
low (or the tested devices are too robust) and most of the devices survive the test.
Thus, only censored data is available. Statistical models can still be extracted from
these data [7].

A significant amount of custom power electronics has to be developed and interfaced
to operate such a life test. The complexity herein does not lie in the hardware
development, but in the configuration and interfacing of the various modules, in order
to provide a powerful yet convenient way for the test engineer to operate the system.
Most hardware constraints can be met using COTS hardware. Powerful hardware
(like a dual-core Advanced RISC Machines (ARM) with a Field Programmable Gate
Array (FPGA) on the same chip1) to run the test program has been recently made
available commercially. However, this and other similar products only operate up to
85 ◦C ambient temperature – which makes them useless for reliability life testing at
higher ambient temperatures.

Developing a custom modularized test system on the other hand brings several
benefits to the overall design procedure:

• Modularization of the individual parts enables simpler development, debugging
and replacement of certain parts of the test system. Already existing and proven
components can be re-utilized, while parts that do not satisfy the requirements
can be upgraded or replaced by newer ones.

• A separate software development team can focus on the software design, while
the hardware developers can focus on providing functional test hardware.

• When the test system architecture stays the same for a variety of different test
applications, the test development time decreases significantly. Further, only
test execution code needs to be adapted, while managing routines for the test
hardware have already been tested.

• To improve different modules, it is beneficial to address one change at a time
for a smaller development team.

1http://www.xilinx.com/products/silicon-devices/soc.html

3

http://www.xilinx.com/products/silicon-devices/soc.html

1 Introduction

1.2 Background

Increasing system integration and miniaturization of power semiconductors leads to
high electrical, thermal and mechanical stress during operation. As a result, the
structure of the power transistor degrades over its lifetime and along with it its
performance. Therefore, reliability stress testing of power devices and applications
prior to production release is required by customers and reliability standards (AEC-
Q100 [1]).

In order to provide the means for testing multiple devices at the same time, single-
device ATE cannot be used. ATE systems typically offer a centralized control instance
with numerous stimuli and measurement devices connected, in order to perform
parametric sweeps on all pins of the DUTs. These systems are optimized to run a
quick production or characterization test to evaluate the devices’ performance. Such
an ATE is expensive and the test time is kept to a minimum, usually taking less than
a second. Thus, running extensive stress tests is not cost effective and a variety of
test systems are usually in use.

1.3 Evolution of Semiconductor Life Test Systems

1.3.1 HTOL

Control System DUT board

HTOL 25 ◦C cold / hot

Pattern

Figure 1.2: HTOL System Architecture

For High Temperature Operating Life (HTOL) test procedures according to the
AEC-Q100 and JESD22-A108 standards [1, 8], multiple independent control systems
are necessary to test the required amount of DUTs. They generally only provide fixed,

4

1.3 Evolution of Semiconductor Life Test Systems

repetitive control patterns to the DUTs and do not read device measurements or status
(Figure 1.2). Improved solutions include control and readout possibilities in order
to provide in situ measurement capabilities [9]. As specified by the JESD22-A108
standard, it is common to periodically stop the test, take all the DUTs out of the
environmental test chamber to perform characterization measurements with the ATE
and continue with the stress test after the characterization [10].

1.3.2 ACUTE / ARCTIS

Host
System

Control & DAQ
System (PXI) DUT board

ACUTE / ARCTIS 25 ◦C cold / hot

Pattern

Measurement

Figure 1.3: ACUTE System Architecture

The Active Cycle Universal Test Equipment (ACUTE) and the Advanced Repetitive
Clamping Test Integrated System (ARCTIS) (Figure 1.3) are life test systems for
smart power semiconductor switches providing short circuit switching and inductive
clamping stress respectively [11–13]. They were developed by Infineon Technologies
and KAI GmbH since 2004 and enhanced by multiple follow-up research projects in
the successive years [14,15]. The DUTs are located in a temperature climate chamber,
in order to provide the required automotive temperature ranges from −40 ◦C to 125 ◦C.
Both systems are able to apply periodic stress pulses for up to 256 devices, while
performing in situ DAQ measurements of the tested devices.

The real-time control system is based on a monolithic hardware setup using PXI
connected FPGA cards and external instruments. The control and data acquisition is
performed on the FPGAs whereas data analysis is done on the host computer.

To provide measurement capabilities for one voltage and one current per DUT, the
system features approximately 3000 individual signal connections through thermally
isolated openings into the climate chamber. Therefore, the limitations of this system
are mainly given by the signal count. It is understandable that such a system cannot
be easily modified to perform additional measurements. Further, applying different
stress pulse patterns requires a redesign of the FPGA code.

5

1 Introduction

1.3.3 Distributed Measurement Systems

Previous efforts have already resulted in creating a distributed measurement archi-
tecture to re-utilize hardware and software components in terms of a client-server
architecture [16] or an eXecutable Verification Plan (XVP) [17,18]. Test plans created
within this XVP framework are eXtensible Markup Language (XML) based files that
describe the features and the behavior of a single semiconductor device. These test
plans can be compiled into different recipes. The recipes, in turn, can be used as either
input for simulations using a Simulation Program with Integrated Circuit Emphasis,
tests using an ATE or device characterization. Test programs in this format feature
linear sequences and handle only single devices. However, for reliability assessment
multiple devices need to be tested over longer time periods to obtain statistical data.

1.3.4 MoPS

Host
System

Bus

MoPS 25 ◦C cold / hot

Control
& DAQ DUT

CTRL

MSR

Control
& DAQ DUT

CTRL

MSR

Control
& DAQ DUT

CTRL

MSR

Figure 1.4: MoPS System Architecture

In order to improve the reconfiguration possibilities, a new power stress test ar-
chitecture is proposed within this PhD project [19]. The architecture builds on the
previously mentioned idea of configurable test procedures (XVP) by re-implementing
it on smaller controllers and adding communication capabilities to enable parallel
testing of multiple devices. As depicted in Figure 1.4, the new features include the
control and data acquisition unit to be in proximity to the tested device or application.
Therefore, it must be physically placed inside the climate chamber. The resulting

6

1.4 Requirements

shorter signal paths compared to the previous systems lead to improved signal quality.
Further benefits are simplified signal connections, because the controller and the DUT
are located close to each other. Old-fashioned, massively parallel cable harnesses
are not necessary anymore, since the Printed Circuit Board (PCB) with the control
and test hardware can be plugged directly into the PCB with the test application.
The required connections to the outside of the climate chamber consist of a power
connection and a data connection. Thereby, the controllers and the test application is
supplied. Furthermore, the controllers are able to receive the test program and to
send back status and measurement data.

1.4 Requirements

Within the last years, a lot of knowledge has been acquired by investigating and
developing semiconductor reliability life test systems. From the previous section, we
can derive the following set of requirements for the control of the new test system
generation:

Fixed firmware There are several reasons to use a fixed test software. First, the
software development resources are rather small for the variety of test applications
addressed with this modular power stress test concept. Secondly, updating the
firmware in a live system – where high voltages and high electrical power are
present – is a dangerous task for the lab engineer, as some electrical components
are not easily accessible. In addition, an approach is required that enables
to change the basic behavior of the controller close to the tested device or
application.

Flexible test procedure The test hardware target (i.e. the microcontroller) needs
to perform numerous tasks. Many of them are common to the majority of
applications: especially measurement data acquisition and communication with
the host system. Observed device status and acquired measurement data may
be used for further investigations. Therefore, device status and measurement
data must be sent to a possibly centralized host infrastructure. In general, the
executed test application determines the test configuration and the execution
sequence, which may be greatly different from the previous application. The
DUTs and their respective test periphery need to be configured and patterns
need to be sent during the test. Depending on internal variables (e.g. counters)
and external states (e.g. measurement values), different actions have to be
carried out. Thus, the firmware of the microcontroller must be capable of
executing such flexible procedures.

7

1 Introduction

Configuration Because the configuration and test patterns are so diverse, it is not
sufficient to enter this information in a Graphical User Interface (GUI) and
discard the data as soon as the test has been concluded. The settings need to be
stored in some files or database structure to be able to compare different tests.
To create flexible test sequences (i.e. test code), the test engineers require some
help to create these files. Further, the test system hardware setup must also be
identified and stored in order to provide comparable reliability tests. These files
shall be stored in a human readable text format.

1.5 Structure of the Thesis

This thesis presents the software framework developed for creation and deployment
of test execution code. The various hardware prototypes and software projects have
been developed in close cooperation with Bachelor and Master students [20–25].

The thesis is structured as following:

Chapter 2 – Concepts & Related Work gives an overview of the previously existing
concepts used for this project.

Chapter 3 – The MoPS Distributed System explains the general architecture of the
modular test system including the required components.

Chapter 4 – System Configuration & Programming focuses on the configuration of
the test system by the operator and test requester. Further, the creation and
distribution of the test descriptions, also called test plans is described.

Chapter 5 – Prototype Implementations gives an example of the specific test im-
plementations based on the modular power stress test and compares the setup
situations.

Chapter 6 – Results & Discussion presents the results of the distributed modular
architecture and discusses the applications in the given real-life implementation
scenarios.

Finally, the thesis will be concluded in Chapter 7 – Conclusion & Outlook.

8

2
Concepts & Related Work

Engineers like to solve problems.
If there are no problems handily
available, they will create their
own problems.

(Scott Adams)

Contents
2.1 Industrial Communication 10

2.1.1 PROFIBUS . 11
2.1.2 CAN . 11
2.1.3 Ethernet . 14
2.1.4 EtherCAT . 17

2.2 Microcontrollers . 18
2.3 Programming Languages . 19

2.3.1 Code Interpreter . 19
2.3.2 LabVIEW . 22
2.3.3 Graphviz . 23

2.4 Markup Languages for Representing Test Configurations 23
2.4.1 INI File . 24
2.4.2 XML . 24
2.4.3 JSON . 26

2.5 Software Deployment Strategies 27
2.5.1 Compile-Flash-Cycle . 27
2.5.2 Boot Loader . 27

2.6 Chapter Summary . 28

9

2 Concepts & Related Work

Numerous fields need to be addressed when creating a modular test system as
proposed in Chapter 1. The microcontroller will be located close to the DUTs

and therefore remote from the host computer. The microcontroller controls the DUT
including its required guard and load modules (see Section 3.5) by applying stimuli
and stress patterns. The host system is responsible for sending configuration data
to the microcontroller as well as collecting and storing measurement data from the
microcontroller hardware.

For that reason, communication is an important part of this system. The microcon-
troller needs to be able to receive, decode and execute the desired test procedures.
Since the effort on low-level microcontroller programming for the target users should
be kept low, a high-level language interface will be required.

This chapter first gives an overview of Industrial Communication, with the focus
on the classification and suitable protocols for use in the later chapters. Next, the
term Smart Devices and their current usage will be explained. The users of the test
system will be required to specify parts of complex routines as program code. Thus, a
section will introduce the concepts of comprehensible, simple Programming Languages.
Further, possibilities to define and apply Test Configurations will be reviewed. Finally,
this chapter deals with different Software Deployment Strategies.

2.1 Industrial Communication

As given by the modular test system requirements, the controller units will be
connected to the host system through a serial data bus. The selection of the used
bus depends on the capabilities of the used controller and the possibilities of a host
computer to access the bus. It must be possible for multiple participants to access the
bus and communicate to a possibly central host system for data storage. Furthermore,
the communication electronics must be capable of withstanding a wide temperature
range of −40 ◦C to 125 ◦C. According to the requirements, a suitable candidate had
to be selected from several options which are described in the following paragraphs.
Specifications are taken from the respective bus standards as quoted.

10

2.1 Industrial Communication

2.1.1 PROFIBUS

PROcess FIeld BUS (PROFIBUS)1 is a field bus network with its origins in a
cooperation between the German government and several industrial automation
companies in 1989 [26,27]. The specification was later defined in several standards,
including the IEC 61158 fieldbus standard.

PROFIBUS uses differential signaling based on RS-485, but can also be implemented
using fiber optics for a wider distance. A maximum number of 127 nodes is allowed.
Distances between 100 m and 1.200 km allow transfer rates up to 12 Mbit/s. A message
can carry up to 244 B of data.

A PROFIBUS network typically consists of a master control instance – the Pro-
grammable Logic Controller (PLC) – that periodically polls sensor data from the
attached slave nodes and transmits set point values to actuators. The PLC, therefore,
is the central brain of such network, where the slave nodes do not require a lot of
processing power. Multiple master nodes are possible according to the PROFIBUS
Fieldbus Message Specification (FMS). A token is exchanged between the master
nodes, in order to define which master may query the nodes.

Two different versions, PROFIBUS Decentralised Peripherals (PROFIBUS DP)
and PROFIBUS Process Automation (PROFIBUS PA), which are in use today, have
been derived from the FMS. PROFIBUS DP is commonly used to query sensors and
control actuators in a production line. PROFIBUS PA is designed for use in hazardous
areas by using robust cabling. The maximum number of connected nodes for use with
PROFIBUS PA is limited to 30 slave devices and the data transmission rate is fixed
to 31.25 kbit/s [28].

2.1.2 CAN

Controller Area Network (CAN) [29, 30] is a serial bus network used widely in
automotive and automation industry. It was developed by Bosch in 1983 in order to
reduce the cabling effort in modern automotive vehicles [31]. The Bosch specification
originally only included the Medium Access Control (MAC) protocol. The CAN ISO
standard includes the Bosch specification, but also defines the physical layer. The
High-Speed CAN version allows data rates up to 1 Mbit/s with a theoretical maximum

1http://www.profibus.com

11

http://www.profibus.com

2 Concepts & Related Work

bus length up to 40 m. In 2012, CAN FD (flexible data-rate) which allows higher
transmission speed and increased data payload up to 64 B has been presented [32].

The most widely used high-speed CAN uses two signal lines, CAN_LO and CAN_HI,
and one reference line (CAN_GND) for data transmission. The idle voltage of the
signal lines is typically 2.5 V. CAN_LO signals the complementary value of CAN_HI.
The difference between CAN_HI and CAN_LO is evaluated, allowing two bit levels
to be transmitted. The bus lines are shared among the participating nodes. On a
CAN network, up to 128 bus participants can be connected, depending on the drivers
of the physical layer and the network length.

The so-called Carrier Sense Multiple Access / Collision Resolution principle is
implemented, in order to establish a communication: A bus member waits until no
other node transmits and then starts sending data. In contrast to Ethernet, CAN does
not abort the message when it recognizes a transmission collision, but implements a
specific collision resolution. Due to dominant and recessive bit encoding, the lower
priority message is overruled by the higher priority message. Therefore, the higher
priority message will always be transmitted. The lower priority senders automatically
back off the bus and retry again later.

The variable latency of these messages increases the difficulty to meet deadlines.
Numerous publications investigated the schedulability of messages being transmitted
for real-time use [33, 34]. Since then, bus utilization of CAN networks has been
increased to about 80 % of the theoretical throughput rate.

Nodes are not directly addressed on the bus, but their messages are encoded using
a unique object Identification (ID). This ID is also used for the Carrier Sense Multiple
Access (CSMA) arbitration described above. Two different message formats can
be used: using standard frames with 11 bit identifiers (known as CAN 2.0 A) and
extended frames with 29 bit identifiers (known as CAN 2.0 B). Except for the different
length of the identifiers, the messages are built up equally.

Arbitration Control Data Footer
Start
1 bit

Identifier
11 bit or 31 bit

RTR
1 bit

res.
2 bit

DLC
4 bit

Data
0 B to 8 B

CRC
16 bit

ACK
2 bit

EOF
7 bit

IFS
3 bit

Figure 2.1: CAN message format [31]

Figure 2.1 shows the CAN message frame for both standard data frames and
extended data frames, consisting of the following fields:

Start-of-frame a dominant bit marks the start of a new CAN frame.

12

2.1 Industrial Communication

Identifier – Arbitration the ID field is transmitted next, in order to perform the bit
wise arbitration based on the encoded priority. The standard CAN frame has
an 11 bit identifier. By using one of the reserved bits in the standard format as
ID extension following the first arbitration field, it is possible to send extended
frames. Additional 18 bit of the second part of the ID are transmitted afterwards.

RTR – remote transmission request is used to differ between a data frame and a
remote frame.

res. – reserved bits two reserved bits as part of the control field for future extensions.

DLC – data length coding specifies the number of data bytes transmitted in the
body of the frame. For a remote frame, DLC specifies the number of expected
data bytes.

Data 0 B to 8 B of data containing the body of the message follow. The length is
determined by the DLC field.

CRC – cyclic redundancy check the result of the Cyclic Redundancy Check (CRC)
for the header and body is sent together with a 1 bit delimiter.

ACK – acknowledgement a 1 bit time slot is transmitted recessively from the sender.
Any receiver may set a dominant bus value in order to signalize correct reception
of the message.

EOF – End-of-frame indicates the end of this message.

IFS – inter-frame-space before the next message can be sent, is a mandatory pause
on the bus. Afterwards, the bus is idle and new messages can be sent by any
node, following the arbitration procedure.

Only the lower layers of the Open Systems Interconnect (OSI) model [35] are
specified by the CAN standard. Several higher level protocols have been developed
to provide additional features on top of the basic data exchange possibilities. For
example the following:

ISO-TP [36] allows sending messages larger than the maximum limit of 8 B of the
standard frames by splitting the data into multiple CAN frames. These messages
also include some information for the receiver to be able to reconstruct the message.
Thereby, it deals with layers 3 and 4 of the OSI model.

13

2 Concepts & Related Work

CANopen [37] was developed within the CAN-in-Automation group, now also be-
ing an international standard (CENELEC EN 50325-4). The communication protocol
is based on CAN networks. CANopen specifies a device model consisting of three
layers: the communication, the object dictionary and the application layer. Communi-
cation models supported are master/slave, client/server and producer/consumer. The
communication is performed using Process Data Objects (PDOs) for real-time fast
exchange of process data and Service Data Objects (SDOs) for accessing the object
dictionary. PDOs are exchanged without additional overhead and can be transmitted
asynchronously (any time), synchronously (after a synchronization message) or on-
demand. SDOs are used to send configuration and parametric data and implement
point-to-point communication including fragmentation and reassembly. The object
dictionary provides a logic addressing scheme for accessing the communication and
device parameters. The application layer implements the devices’ functionality and
interacts with the Input & Output (IO) signals of the physical process.

DeviceNet [38] implements higher layer protocols aimed at industrial automation.
The network also supplies power for the connected nodes. A DeviceNet network
supports up to 64 individual nodes that are addressed using MAC based ID. These
addresses are assigned dynamically and duplicate addresses are recognized during
the start-up. Based on CAN 2.0 A, only the shorter 11 bit message identifiers are
used. DeviceNet specifies an object model that describes node behavior. Messages
are exchanged using the master/slave or producer/consumer communication scheme.
Fragmentation and re-assembly of messages larger than 8 B is also supported.

2.1.3 Ethernet

In 1973, Ethernet was developed at Xerox PARC [35,39]. The first Ethernet standard
was published as IEEE 802.3 in 1983. It was an improvement over the existing
ALOAHnet, by adding CSMA to the MAC layer. Originally, Ethernet was used on a
shared, coaxial cable. Afterwards, twisted-pair cables with full duplex communication
channels were introduced, being the main reason to win the competition against other
Local Area Network (LAN) communication technologies such as Token Ring and
Token Bus [40].

Ethernet is well known for the Carrier Sense Multiple Access / Collision Detection
(CSMA/CD) arbitration access mechanism. A bus participant observes the common
medium (the Ether) and may begin transmission when it is free. This Carrier Sense
part is also used to detect collisions on the network. When a collision is observed, a
jamming signal is broadcast in order to immediately abort transmission of all conflicting

14

2.1 Industrial Communication

senders. The current packet is discarded and enqueued for another transmission retry.
The retransmission must wait a randomized time, depending on the sender’s hardware
address and the number of retries. Therefore, the retry of the two competing parties
will likely happen at different times and the probability of another collision to happen
is less.

Preamble Header Body Footer
Preamble

7 B
Start
1 B

Destination
6 B

Source
6 B

Type
2 B

Data
46 B to 1.500 kB

CRC
4 B

Figure 2.2: Ethernet frame [35]

Figure 2.2 shows the composition of the Ethernet II frame. Version 1 of the Ethernet
frame, which used smaller destination and source addresses, was never in productive
use.

Preamble The frame starts with a preamble used to synchronize the clocks of the
nodes on the network. 7 B of alternating ones and zeros are transmitted.

Start The Start-of-frame delimiter marks the end of the preamble and the beginning
of the Ethernet frame.

Destination The header of the packet then starts with the destination MAC address.

Source The source MAC address specifies the sender of the packet.

Type Ethernet packets specify the type of the transmitted data in the following field.
A value less or equal to 1500 is interpreted as the length of the payload. Higher
values are commonly used to interpret the payload data for higher layers of the
OSI model.

Payload The data portion of the packet must have a minimum length of 46 B. This
size is required in order to guarantee full occupation of the medium and enabling
the collision detection feature. The maximum packet length is 1.500 kB.

CRC Ethernet uses a 32 bit CRC sum to provide simple error detection on the
receiving side.

The MAC address for Ethernet is a 48 bit (6 B) number which must be unique on
the network. A single bit within the most significant byte of the MAC address is used
to distinguish whether the MAC address is universally administered or locally by the

15

2 Concepts & Related Work

network administrator. As a result, implementing custom addresses in a separate
network is possible without the need of registering or buying a vast amount of MAC
addresses.

The introduction of Ethernet switches enables network participants to use point-to-
point connection links and therefore making the CSMA/CD media access requirement
obsolete. With the use of twisted pair cabling, sending and receiving of data at the
same time became possible by using a separate electrical channel for each direction.
A switch receives the packets per connected line in a queue and inspects the header of
an Ethernet packet to decide to which portion of the network it must be forwarded.
By remembering the source MAC addresses of the Ethernet packets, a destination
table will be assembled. Thereby, only part of the Ether is occupied and multiple
nodes can send and receive data independently at the same time.

Industrial Ethernet

While the standard Ethernet uses a shared medium, it still provides high utilization
of the overall bandwidth [39]. These networks provide only a best-effort guarantee
of messages being transmitted. Industrial field buses on the other hand require
deterministic worst-case delivery times for process automation.

Industrial Ethernet can be classified into four categories according to [41,42]:

1. Full Ethernet according to IEEE 802.3 uses COTS equipment for participating
nodes and network devices. It can be used together with other Industrial
Ethernet solutions and standard Ethernet. However, only Quality of Service
and best-effort service can be guaranteed.

2. Ethernet Compatible networks use specific devices on standard infrastructure
(i.e. switches). To guarantee real-time performance, network traffic management
takes place. The benefit of using specific network devices is also the biggest
drawback.

3. Common Ethernet devices using standard 802.3 layers according to the OSI
hierarchy. The higher layers are modified in order to provide deterministic
services.

4. Field buses using Ethernet links provide a modified MAC layer to enable real-
time communication. Hard real-time performance can be achieved. However,
these networks cannot coexist with existing standard Ethernet devices.

16

2.1 Industrial Communication

2.1.4 EtherCAT

Ethernet for Control Automation Technology (EtherCAT) [43,44] is an Ethernet-based
fieldbus developed by Beckhoff. It has recently been included in the IEC 61158 fieldbus
specification [28]. EtherCAT is a master-slave bus with one active master allowed.
The slaves are typically connected in a ring topology, but line, tree and star or any
combination are also possible.

The master device in the network does not require special hardware and can
be implemented on a COTS computer using standard full-duplex Ethernet Network
Interface Cards (NICs). Slave devices however require a modified MAC unit. Therefore,
EtherCAT belongs to the last category listed in the previous section. Packets are
received on the Ethernet receive channel (RX) from the upstream connection and sent
to the transmission channel (TX) of the downstream connection. The last slave of an
EtherCAT network segment detects the missing downstream link and automatically
returns the frames on its receiving side. In addition, the circulation status bit is set,
to prevent frames from circulating in separated segments. If the circulation bit is
already set, the frame is destroyed. Thus, the master can immediately detect cable
failure or a network separation. Cable redundancy and hot swap of slaves are also
supported by using a second NIC on the master node.

EtherCAT frames are standard Ethernet frames with the Ethernet type field set to
0x88a4. EtherCAT can also be inserted in User Datagram Protocol (UDP) frames to
enable Internet Protocol (IP) routing. In contrast to Ethernet, the frames are not
stored and inspected at the receiving side, but they are processed while they are being
forwarded to the next receiver. Hence, data is read and written on-the-fly. Since each
slave can modify the data, the Ethernet CRC is checked and re-computed for each
frame. Erroneous frames are immediately discarded when detecting the error.

A single EtherCAT frame consists of its frame header and several datagrams –
called Protocol Data Units (PDUs) – which address individual parts of the process
image. Therefore, a single frame can be used to address multiple variables and/or
slaves at the same time improving the network utilization. Each PDU contains a
separate field for the command, address, data and working counter. The address can
be positional (the slave node position in the line architecture), direct (node address)
or logical. The first two methods are physical addresses which directly access memory
on the associated slave. Logic addresses are translated using a Fieldbus Memory
Management Unit working similar to the Memory Management Unit of a modern
processor. These logic addresses allow mapping of very small bit-wise data signals
into the larger process image.

17

2 Concepts & Related Work

EtherCAT also features a distributed clock for slave synchronization. Broadcast
frames are used to capture the individual clock offset values of the slaves. After
acquiring these offset times, they are used to compensate the different arrival times of
the frames due to the ring topology.

Further, EtherCAT also provides a mailbox service to enable several additional
capabilities. Ethernet over EtherCAT can tunnel all Ethernet frames. CANopen over
EtherCAT implements the PDO message mechanism. File access over EtherCAT can
transfer firmware images and other files similar to File Transfer Protocol. Servo drive
over EtherCAT maps the servo drive profile to the EtherCAT mailbox.

2.2 Microcontrollers

The first microcontroller was introduced in 1974 [45]. In contrast to micro processors,
microcontrollers have all required components (Arithmetic Logic Unit, Random-Access
Memory (RAM), Read-Only Memory) on the same chip. Consequently, they do not
need additional external components. Microcontrollers used in factory and test
automation commonly are slave devices on digital bus interfaces. They sense and
process physical quantities, communicate with a master device and interact with the
environment. These devices are also known as smart transducers [46,47]. The main
concept at this stage still relies on measuring or actuating purposes which still require
a real-time connection to a, possibly centralized, controller [48]. Therefore, many
architectures emphasize the real-time capabilities of the communication system [49,50].
With increasing capabilities of a node, the smart devices become smart controllers,
which are able to locally control a system part autonomously. An overview of control
and management methods for such smart devices is given in [51].

Today’s microcontrollers feature many peripheral modules to perform specialized
tasks in addition to the main Central Processing Unit (CPU). Typically, serial com-
munication (Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral
Interface (SPI), Inter-Integrated Circuit, CAN, and Ethernet), several hardware timers,
Pulse Width Modulation (PWM) and analog converters are present. Using Direct
Memory Access (DMA) controllers and special trigger lines within the microcontroller,
these modules can communicate with each other without requiring any software
interaction through Interrupt Service Routines (ISRs).

Microcontrollers with a 32 bit CPU core, like the ARM Cortex-M2, provide the
performance for the efficient execution of interpreted script languages. The latest
developments also present the qualification of these high performance microcontrollers
for use in the automotive ambient temperature range up to 125 ◦C.

2http://www.arm.com/products/processors/cortex-m

18

http://www.arm.com/products/processors/cortex-m

2.3 Programming Languages

2.3 Programming Languages

This section gives an overview of available interpreted languages for use on a micro-
controller target. Further, used languages and software libraries on the host system
are outlined here.

2.3.1 Code Interpreter

Over the last years, networked boot-loaders have emerged that allow transferring
executable code during power up of the controller via serial data buses such as UART,
CAN or Ethernet [52,53]. Using these mechanisms, updating the controller firmware
can be simplified substantially, since it is not required to plug the flash tool into
each controller individually. However, this does not solve the problem that for each
different task a new firmware image needs to be created.

Improved concepts implement a common base firmware that supports the execution
of script commands. Several projects have already investigated approaches to provide
embedded Virtual Machines (VMs) for Lua (eLua [54]) or Python (p14p “Python-
on-a-chip” [55], the Owl Embedded Python System [56] and MicroPython [57]) which
allow the execution of user provided code on a microcontroller.

Python

Python [58] is a high-level, interpreted programming language, which first appeared in
1991. Multiple paradigms like object-oriented programming, structured programming
and functional programming are supported. Its most distinguishing feature is to use
indentation as syntax element to describe blocks of code, whereas common languages
like C and Java use curly braces. The language follows the principles of simplicity,
clarity and readability.

Python contains several basic built-in data types: str (string), int (an integer
value of arbitrary length), float (floating point number), complex (complex numbers)
and bool (boolean values True and False). Additionally, Python also provides the
advanced types: list (a mutable list of values of mixed types), tuple (an immutable
ordered set of mixed types), set (a mutable unordered set) and dict (a dictionary
of key-value pairs). In addition, custom types deriving from the class object can be
created.

19

2 Concepts & Related Work

The reference implementation of Python CPython is written in C. Python programs
are first compiled into the Python bytecode to be executed in the Python VM. Python
can be extended by writing libraries in either C or Python. Therefore, Python is
suitable for custom extension and accessing microcontroller hardware.

Barr [56] describes a sophisticated software framework based on the Python VM
that removes the hitherto required compile-flash cycle of microcontroller programming.
This approach features an interactive Python interpreter on the microcontroller. The
original Python VM is modified and only a subset of Python commands is made
available. The Python program however needs to be compiled into bytecode on a
desktop machine and is transferred to the microcontroller via a serial data bus for
execution. Additionally, the bytecode can also be stored on the controller to be run
independently.

In contrast, the MicroPython project features a reimplementation of the Python
language on a microcontroller [57]. It contains all language features as well as an
on-line interpreter. Furthermore, a read-eval-print loop can be accessed via its serial
connection and programs can also be stored in the embedded device’s flash memory.

Lua

Lua [59] is a scripting language designed for use in embedded systems. Created in
1993, its main goals are to be embeddable, small and simple. Lua is implemented in
C and also runs on a VM.

There are fewer basic data types present in Lua compared to Python: nil, boolean,
number (since Lua 5.3, it is possible to distinguish between integers and floating point
numbers [60]), string, userdata (to hold arbitrary C data structures), function,
thread. Lua has only one built-in data structure, the table. Tables are associative
arrays where the keys can be any Lua value except nil. They can also be accessed in
an object-like way (i.e. the field access t.x is equivalent to the indexed access t["x"]).

Multiple programming paradigms are possible [61]. Object-oriented programming
can be achieved through meta-tables where they provide additional features to ordinary
Lua table and userdata values. Functions in Lua are first-class values. They are
always anonymous, can be assigned to a value and also passed to other functions as
arguments. Therefore, functional programming is also supported.

Lua is not a standalone language, but a library that can be included into the host
application [62]. An extensive Application Programming Interface (API) is provided to

20

2.3 Programming Languages

Listing 2.1: Lua C-API Example [62]

1 static int l_sqrt (lua_State *L) {
2 double n = luaL_checknumber(L, 1);
3 lua_pushnumber(L, sqrt(n));
4 return 1; /* number of results */
5 }

create custom modules and run custom code side-by-side with Lua. All Lua functions
operate on either the Lua registry or use the Lua stack interface by retrieving and
returning values (see Listing 2.1).

Many programs and embedded systems feature Lua scripting capabilities. The
eLua-project runs a full Lua interpreter on the microcontroller. Thus, the script
can be compiled on-line and all language features are available. eLua also provides
an interactive command access for simple debugging through a serial connection.
Additionally, Lua supports the loading of pre-compiled bytecode in addition to raw
source files.

Evaluation

Both script language projects provide a powerful C-API for the incorporation of
custom C-functions, enabling simple access to the controller’s hardware periphery. In
addition, they provide means for a standalone program execution.

The Lua API however is simpler and does not require a special value type in C.
All values exposed to C are native data types such as integers, floats and character
pointers (strings). Therefore, there is no need for manual garbage collection of these
C data structures in Lua.

The previously mentioned existing projects that aim to put a script interpreter
onto microcontrollers fall short in terms of distributing the program code to multiple
controllers at the same time. However, distribution is essential if multiple controllers
are situated in the same test system.

Further, numerous different test applications need to be addressed with a common
base platform. In general, different functions for a specified output pin are required.
Thus, the effort to create a new test description must be kept small, preferably without
flashing a new firmware to the microcontroller.

21

2 Concepts & Related Work

2.3.2 LabVIEW

National Instruments LabVIEW is a proprietary development platform for DAQ, test
automation and embedded system design. LabVIEW provides native support for
Virtual Instrument Software Architecture (VISA) via General Purpose Input Bus
(GPIB) [63], USB, serial as well as raw Ethernet (Transmission Control Protocol
(TCP) sockets) and LAN eXtensions for Instrumentation (LXI) connections. Therefore,
it is very simple to interface COTS laboratory equipment such as power supplies,
electronic loads or oscilloscopes for control and measurement purposes. Code is entered
graphically by strictly following the data-flow programming paradigm. Within the
development environment, the entered code is immediately compiled to native code
for the CPU and ready for execution. There is no extra compile step required.

Being a high-level language, it is much simpler to create and debug software than
writing it in C. Further, LabVIEW inherently provides parallel execution on multiple
CPU cores. For synchronization purposes between those parallel threads, queues
(similar to mailboxes), notifiers and events can be used. LabVIEW further supports
object-oriented software design enabling many architectural concepts borrowed from
other languages like C++ or Java.

Within the host software project described in this thesis (see Section 3.1), several
readily available libraries are used:

• The Actor Framework [64] is a software architecture for the LabVIEW environ-
ment based on the actor model [65]. An Actor is a self-contained, executable ob-
ject instance that can send and receive messages. Thus, a Model–View–Controller
interface can be implemented, where the Actor-derived class contains the model.

• The Character Lineator3 is a serialization library for LabVIEW. It is provided
on the National Instruments community forums and capable of serializing and
de-serializing LabVIEW data structures into arbitrary formats. So far, the
library can transform all LabVIEW basic data types as well as LabVIEW classes
from and to a simple variant of XML, JavaScript Object Notation (JSON) and
binary formats. The serialization framework can easily be extended for custom
formats like the Lua format.

During the design of the host software, scripting capabilities for use in LabVIEW
have been evaluated. An important requirement is that the scripting languages

3https://decibel.ni.com/content/docs/DOC-24015

22

https://decibel.ni.com/content/docs/DOC-24015

2.4 Markup Languages for Representing Test Configurations

on both microcontroller and host platform are the same, so the lab engineer does
not need to learn two different interfaces. Lua for LabVIEW 4 previously known as
LuaVIEW [66] provides the Lua scripting engine for LabVIEW. Thus, Lua script code
can be executed with call-back functions written in LabVIEW (e.g. for instrument
control). However, Lua for LabVIEW is a closed source commercial library and
requires a license for use.

2.3.3 Graphviz

Listing 2.2: Graphviz dot script for the Finite State Machine (FSM) display

1 digraph g_1 {
2 // default settings:
3 node [fontsize=14];
4 edge [fontsize=12, arrowsize=0.75, splines=curved];
5 // current FSM state in red:
6 "IDLE" [color=red, fontcolor=red];
7 // all transitions with set events colored in blue:
8 "IDLE" -> "INIT" [label="start", fontcolor=blue, color=blue]
9 "INIT" -> "WAIT" [label="@else"]

10 "WAIT" -> "RUN" [label="@eru3"]
11 "RUN" -> "CLEANUP" [label="stop"]
12 "CLEANUP" -> "IDLE" [label="@else"]
13 }

Graphviz [67] (short for “graph visualization”) consists of a language (“dot”) capable
of describing directed and undirected graphs. Metadata and style annotations can
be added to the graph description to describe the visual appearance. Further, it
includes a set of tools (programs) to render images from this description. Each tool
uses a different layout algorithm to display the nodes of the graph. Numerous image
output formats including Portable Document Format, BitMaP and Portable Network
Graphics are possible.

2.4 Markup Languages for Representing Test Configurations

Modular configurable software needs some kind of configuration files to specify pa-
rameters for the compiled application at run time. Such parameters may be the used

4http://luaforlabview.com

23

http://luaforlabview.com

2 Concepts & Related Work

Ethernet port numbers, attached external instruments and their physical addresses or
timing and debugging parameters. In order to provide this information, text formats –
preferably human-readable – are required.

2.4.1 INI File

The INI file format5 is used for some operating systems and applications. The name
was derived from its main use, as “initialization” files, and the typically used file
extension “.INI”.

Listing 2.3: INI example

1 [section]
2 key = value

Within the INI file (see Listing 2.3), each configuration entry is written on its own
line. The configuration entries are key-value-pairs, delimited by the equality sign (=).
Values are typically strings, where other types (e.g. numbers) need to be converted
by the parser.

Entries can optionally be grouped by sections, therefore providing a minimum
hierarchy. However, deeper hierarchy levels are not defined and usually the text
parsers need to take care of this.

2.4.2 XML

XML [68] is a very generic markup language, designed to store and transport data.
The XML format uses tags – string names inside angular brackets – to describe data
hierarchically.

A simple example6 is displayed in Listing 2.4. There are multiple benefits of using
XML over a plain text format such as the INI file format:

• XML files can have arbitrary nested hierarchy levels and references to describe
the data

5https://technet.microsoft.com/en-us/library/cc731332.aspx
6http://www.w3schools.com/xml

24

https://technet.microsoft.com/en-us/library/cc731332.aspx
http://www.w3schools.com/xml

2.4 Markup Languages for Representing Test Configurations

Listing 2.4: XML example file6

1 <?xml version="1.0" encoding="UTF-8"?>
2 <note>
3 <to>Tove</to>
4 <from>Jani</from>
5 <heading>Reminder</heading>
6 <body>Don’t forget me this weekend!</body>
7 </note>

Listing 2.5: XML Schema example for Listing 2.46

1 <xs:element name="note">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element name="to" type="xs:string"/>
5 <xs:element name="from" type="xs:string"/>
6 <xs:element name="heading" type="xs:string"/>
7 <xs:element name="body" type="xs:string"/>
8 </xs:sequence>
9 </xs:complexType>

10 </xs:element>

• Data can have a type description, allowing also binary data to be used

• The data can be validated using Document Type Declaration (DTD) or XML
Schema

• XML provides a query language (XPath) to filter data in a purely functional
style.

Since our test plans will be stored in plain text and users might modify the data,
validation of the XML structure is essential before parsing it. Due to its structure,
XML is very simple to read for humans and to parse for programs. However, practical
use of validation of an XML document is limited [68]:

DTDs are not written in XML and thus cannot be validated using a meta type
description. Using DTD, character data (strings) cannot be limited to a subset of
valid characters, by e.g. specifying a regular expression. Modular type definitions and
evolution of thereof are not supported, which makes it difficult to define a larger set
of related DTDs.

25

2 Concepts & Related Work

To tackle these problems (namespaces, modularization, written in XML, . . .), XML
Schema has been developed. Nonetheless, XML Schema is generally too compli-
cated [68]. XML Schema does not provide the specification of the XML root element.
Further, the element and data declarations are not context-sensitive, thus the schema
cannot limit the existence of specific attributes if a specific value is set. Hence, XML
Schema fails to describe its own XML syntax.

2.4.3 JSON

JSON [69] is a standardized open format for data exchange derived from the JavaScript
syntax. It is heavily used in web technologies for asynchronous communication between
browsers and web servers. JSON consists of six data types (see Listing 2.6):

null an empty value.

boolean true and false values.

number decimal, floating point and exponential number representation.

string any UTF-8 encoded string enclosed in quotes.

array an ordered list of values of any JSON type using square brackets notation with
commas as separators between elements.

object an unordered set of key-value pairs enclosed in curly braces. The keys are
JSON strings, separated from their value by a colon.

Listing 2.6: JSON example

1 {
2 "string":"Hello",
3 "array":[0, 1, 2],
4 "number":2.99792458e8,
5 "object":{
6 "enabled":false,
7 "keys":null
8 }
9 }

26

2.5 Software Deployment Strategies

Through the use of objects and arrays, a structured representation of the encoded
data is possible. In many programming languages, the representation can be used to se-
rialize and reconstruct objects with built-in functions like the JavaScript JSON.parse()
and JSON.stringify().

In contrast to the XML and INI format, the JSON standard does not specify
comments. Extensions, such as richer data types like date and time or comments,
must be handled by the encoding and decoding side. According to the project website7,
there are JSON libraries available for more than 60 programming languages as of
February 2016. Similar to XML Schema, a schema description for the JSON data
format is available as working draft [70]. Tools and software libraries for validating
JSON data according to a given JSON Schema are also available8.

2.5 Software Deployment Strategies

Using a high number of microcontrollers in a system requires a clever way to update
their firmware. It is not feasible to update the software for each device manually.

2.5.1 Compile-Flash-Cycle

Microcontroller software is typically stored in the flash memory of the embedded device.
The binary instructions are written to the memory using the standard programming
or debug interfaces (Joint Test Action Group, Serial Wire Debug, Device Access Port),
provided on the microcontroller pins. To perform changes, the software first has to be
changed and re-compiled. Then, it can be flashed onto the target. However, using the
modular test system approach, there will be dozens of microcontrollers present in the
environmental chamber where these local programming interfaces would be hard to
access. For that reason, a networked solution is required.

2.5.2 Boot Loader

A boot loader is a component that can write data received on a bus interface to the
embedded flash of the microcontroller. Reference designs and architectures for serial

7http://json.org
8http://json-schema.org

27

http://json.org
http://json-schema.org

2 Concepts & Related Work

interfaces like UART and CAN exist [52, 71]. Therefore, the boot loader can basically
update itself, on the data bus that is already provided into the climate chamber.
Using more advanced bus interfaces, the boot loader becomes also more complicated.

The industry standard for deploying operating systems via Ethernet is the Preboot
eXecution Environment using Dynamic Host Configuration Protocol (DHCP) and
Trivial File Transfer Protocol infrastructure. However, microcontrollers are easily
overloaded by the overhead of providing these features.

2.6 Chapter Summary

In this chapter, an introduction to several industrial communication possibilities has
been given. For the first prototype implementation, CAN has been selected because
of its simplicity. The CAN frames are sent event triggered with a priority value. Thus,
important status information can still be delivered timely. To improve the data rate,
the second prototype uses Ethernet. Thereby, a larger number of bus participants can
be addressed by using Ethernet switches. The real-time EtherCAT implementation
is of limited use for this modular test system. The main problem is that EtherCAT
(like most of the time-triggered communication protocols) require a preset slave list.
It does not allow dynamically adding and removing slave devices – which is a major
requirement for this system architecture.

The control module must be capable of running at high ambient temperatures
(up to 125 ◦C). Instead of microprocessors, microcontrollers have been chosen for
implementing the control and measurement modules, due to their flexibility and
availability for the automotive temperature range.

The inclusion of an interpreted scripting language within the microcontroller
firmware has been decided in favor of Lua. The smaller memory usage and the
simple C-API support the decision. The use of the LabVIEW programming environ-
ment and the Graphviz modeling language for the host software has been explained.

Further, various test configuration file formats have been described. Due to the
availability of the JSON for numerous programming languages, JSON will be the data
exchange format for this project.

In the beginning of the project, microcontroller development will start using the
classic compile-flash cycle. In the later stages – reaching beta release versions – the
use of boot loader mechanisms for deploying larger quantities of microcontrollers in
the climate chamber is planned.

28

3
The MoPS Distributed System

Divide each difficulty into as
many parts as is feasible and
necessary to resolve it.

(René Descartes)

Contents
3.1 Host Layer . 32

3.1.1 Software Architecture for MoPS 33
3.1.2 MoPS Tiny Host . 36

3.2 Communication Channel . 37
3.2.1 Selection . 37
3.2.2 CAN-based Interface . 38
3.2.3 Ethernet-based Interface . 41

3.3 Distributed Control & Sense Node 47
3.3.1 SmartMoPS . 48
3.3.2 HTOL Node Board . 49
3.3.3 DC-Converter Stress Board 51
3.3.4 MicroMoPS . 53

3.4 The MoPS-CORE Microcontroller Firmware 55
3.4.1 Lua Interpreter . 56
3.4.2 Hardware Interaction . 57
3.4.3 Background Routines . 58
3.4.4 Electronic Data Sheet . 59

3.5 Peripheral Modules . 60
3.6 Chapter Summary . 62

29

3 The MoPS Distributed System

This thesis introduces a new concept of reliability testing for power semiconduc-
tors – Modular Power Stress (MoPS). MoPS has the goal to provide a flexible

infrastructure for customizable stress test applications. Such a system is then capable
of running various test applications with a common base system architecture. The
test engineers and test operators only need to learn a simple comprehensive system,
in contrast to the variety of different test system architectures that already exist.

To handle the complex requirements, the proposed test system is split up into
smaller parts. Since the device subsystems also contain intelligent processing elements,
we call the MoPS test system a distributed test system [19]. Having powerful controllers
available, the real-time control and communication effort on the host computer can
be reduced significantly.

Figure 3.1: Modular Power Stress test Architecture [19]

The main components of such a modular architecture are given in Figure 3.1.

Master System The centralized host is responsible for controlling external devices
such as voltage supplies or electronic loads. It is further capable of loading the
test procedure, transferring it to the distributed execution and measurement
nodes and managing the test.

30

Device Subsystem Each of these distributed nodes is the central heart of the respec-
tive device subsystem. The controller does not only apply stress patterns to
the DUT, but also manages the surrounding hardware periphery via the local
bus. Various modules – such as protection, bias and load – are connected to
this serial and parallel, mixed-signal bus.

Serial Data Bus The node interacts with the master system via a serial data bus
to receive the test plan, management commands and report back status and
measurement results. Since this bus concerns the outside communication of a
single node, it is called global bus.

By providing such an architecture, the main requirements are met:

• Each DUT is situated very close to the respective stress and measurement
controller. Power electric circuits (i.e. the modules) are close to the DUT to
reduce interference.

• Only very few cables – namely the power bus to supply the DUTs and the data
bus to supply the controller with the test configuration – penetrate the climate
chamber casing.

• The devices can still be individually protected as in previous test system gener-
ations. Further, individual control provides the possibility to stress the devices
under different operating conditions in a simple way.

However, since there is no single central instance to execute the test, it is a significant
effort to create the test code and configure this distributed test system architecture.
Chapter 4 explains the details how to configure the system and Chapter 5 describes
the steps of executing a custom test plan.

This chapter describes the host layer in Section 3.1, the communication channel in
Section 3.2 and the executing hardware subsystem (i.e. hardware targets) in Section 3.3.
The components used in the microcontroller firmware are described in Section 3.4.
A short overview of various periphery modules is given in Section 3.5. Parts of this
chapter have been published in a paper at the 11th IEEE International Conference on
Industrial Informatics in 2013 [19].

31

3 The MoPS Distributed System

3.1 Host Layer

While the life test is executed mostly on the distributed controller nodes, the combined
test system still requires a central management unit. The tasks of this central instance
include

• to provide a graphical user interface to the operator. The test system will be
operated in a lab environment and important information must be presented
visually to the users in a comprehensible way.

• to load the test definitions and transferring the test recipes to the executing
controller nodes. The test plan is stored in files for archiving, documentation
and comparison purposes. The test system must read these files and distribute
the test to the target hardware.

• to store information about and results from the tested DUTs as well as the
measuring node. Analog quantities such as voltage, current and temperatures
are continuously recorded and must be preserved for later analysis.

• to access external hardware that the controllers cannot interface directly. Since
multiple microcontroller nodes will use the same Power Supply Unit (PSU), they
must be centrally controlled.

• to sequence and synchronize multiple controller nodes. Although real-time
requirements on the communication channel are relaxed, there exist several
situations, where sequencing of test channels is important: A power supply
might be used for several DUTs simultaneously, but the devices cannot be turned
on at the same time (e.g. due to high start-up power requirements). In this
case, the host program will interact with the nodes and control the externally
connected devices.

Laboratory instruments like power supplies, electronic loads, oscilloscopes, are often
required in power electronic life tests. These instruments are typically connected via
parallel bus (GPIB) or serial buses (RS-232, USB, Ethernet). Modern devices already
feature Ethernet based higher level protocols such as LXI. Due to cost and space
restrictions, multiple DUTs are connected to a single instrument. Therefore, the host
layer has to control these devices accordingly.

32

3.1 Host Layer

SAM - Software Architecture for MoPS
(Host Software)

responsible for 1 physical target each

MoPS Hardware Targets

Test Subsystem

Main
Actor

Test
Actor

Another
Test

FSM
& Lua

Node
Actor 2

Node
Actor 1

Node
Actor 3

Node
Actor 4

Target 2
10.65.148.1

Target 1
10.173.73.1

FSM
& Lua

Target 3
10.203.12.1

Target 4
10.15.251.1

Comm
Interface
(Ethernet)

FSM
& Lua

Guard DUT Load

Figure 3.2: Software Architecture for MoPS [72]

3.1.1 Software Architecture for MoPS

Software Architecture for MoPS (SAM) is a specific implementation of the host layer,
developed using the LabVIEW programming environment. The Actor Framework (see
Section 2.3.2) is used to provide an extensible and reconfigurable software architecture.
Each Actor may either present a GUI display to the user or run in the background to
handle a specific task. Upon interacting with the GUI, messages are sent to the Actor
core handler to update the model and further refresh the view.

SAM is organized in a hierarchical structure. Figure 3.2 gives an overview of
the host software. The Main Actor reads the system configuration and starts the

33

3 The MoPS Distributed System

Communication Interface (comm) and the Log Actor (log). The details of the system
configuration are explained in Chapter 4.

When the SAM software is started, it periodically polls the network for MoPS
hardware targets by broadcasting the NODEINFO command (see Section 3.2). Every
available and compatible target will report back its status. Thereby, SAM recognizes
new hardware targets and the Main Actor starts a dedicated Node Actor to handle
the communication and test execution for each specific target. Thus, each executing
node has a virtual representative within the host software that acts as a proxy. In
a similar way, each external instrument gets an instance of the Instrument Actor
assigned, which makes it possible for SAM to interact with the device.

Upon loading a test plan file, a Test Actor is started. It is the main responsible
agent for running a test on the test system. Within the test plan, a number of
targets and the DUTs to be tested are described in the oven plan as well as the
required instruments. The Test Actor, hence, assigns the requested Node Actors and
Instrument Actors and reserves their usage. An actor may only be reserved by one
test, as it may only execute one test at the same time. Furthermore, the Test Actor
may request the usage of connected power supplies, as specified in the oven plan.

Figure 3.3: Software Architecture for MoPS GUI

Main Actor During the initialization of the application, the configuration file is read
and the main actor is started. Required external software tools are checked
and their versions are reported during the start-up of the software. The Main
Actor then starts the log facility and initializes the communication interface.
Figure 3.3 shows the main GUI. The panel is divided into two parts. The left
hand side displays a tree, where the child actors are listed, and the right hand
side is a container to display the child actors’ GUI. Within the tree, the child
actors are categorized. System Actors, such as the Communication (comm) and
the Log Actor (log), are displayed in the root of the tree. Unassigned Nodes

34

3.1 Host Layer

are summarized in the Unassigned category. Each Test Actor defines its own
category. Requested nodes and external devices are displayed as children of the
Test Actor.

Log Actor The Log Actor can print messages it receives to a graphical display and also
write the messages to a text file or a database. The selection of the output format
is done in the configuration file. A separate tool is available for displaying and
filtering the stored messages during an active test as well as offline for debugging
purposes [73].

Communication Interface The Communication Interface deals with sending messages
to and receiving from the hardware targets via the global bus interface. SAM
deals with the node messages in an abstract way. Details about the message
format are given in Section 3.2. The communication interface translates the
address and payload information into a suitable packet to be transmitted. For
the curious user, statistics like number of messages and total transmitted and
received Bytes are collected and displayed.

Figure 3.4: SAM Test Actor

Test Actor Upon loading a test plan, the read data is first verified by the external
Test Plan Checker tool (see Section 4.3.2). Then, the requested hardware targets
and external instruments are read from the oven plan and requested from the
Main Actor. If all requested agents are available, they are assigned to the specific
test. Finally, the Test Actor is started by SAM and its GUI panel is added to
SAM (Figure 3.4). To simplify the look-up of the assignment for the user, the
tree control is rearranged as previously described. Each Test Actor may also

35

3 The MoPS Distributed System

execute the state machine given in the test plan. An instance of the Lua Actor
is started too. The Test Actor displays the test status to the user and provides
the means to start and stop the test. Further, the FSM diagram of the test
procedure (see Section 4.2) is visualized by drawing the image (see Section 5.2.3).
The host software is capable of loading and running multiple tests concurrently.

Node Actor An instance of the Node Actor is responsible for managing a single
hardware target. Therefore, an instance is created for each recognized target on
the network managed by SAM. The GUI of the Node Actor displays information
about the node and the test. Since both the Node Actor and the hardware
target run an FSM, the Node Actor displays an image for each state machine.
Measurement data acquired by the hardware target may also be viewed in this
actor.

Lua Actor To decouple executing a loaded FSM from the Node and Test Actors, a
separate background actor has been created. This Lua Actor is the same for
both test and node parents, except for some differences in the provided API.
Details about the implementation of the Lua engine and the operation with
LabVIEW are given in Section 5.2.1.

Instrument Actor For each connected external instrument, a resource actor is cre-
ated [74]. The actor itself does not care about the type of the instrument as
it loads the required drivers depending on the SAM configuration. Thus, it
abstracts the interface to the instrument to make it possible to change the
instrument without rewriting the test code.

3.1.2 MoPS Tiny Host

In addition to the test system software, a small application has been created to send
messages to the hardware targets (Figure 3.5). This so-called Tiny Host tool is used
to test the communication interface. It provides an interface to send messages to a
hardware target manually and to execute commands in the Lua interpreter running on
the microcontroller. Further, Lua script files can be sent to the target and executed.
These Lua scripts are processed without the need of an FSM description. Therefore,
the laboratory evaluations of a new piece of hardware can be done without a full test
plan. Due to its simplicity, hardware events cannot be evaluated using the Tiny Host.
Furthermore, the Tiny Host does not feature any safety checks or instrument control.

36

3.2 Communication Channel

Figure 3.5: MoPS Tiny Host

3.2 Communication Channel

A serial data interface to each test node is required to reduce the amount of cables.
The interface is used to connect the nodes and let them receive stress test patterns as
well as report device status to a central data storage.

3.2.1 Selection

The communication interface is selected according to several requirements [19]. It
should be possible to send single messages for configuring the controller nodes as well
as receive parameter measurements at relaxed time intervals (about 1 kB/s to 10 kB/s
per DUT). Optionally, device waveforms are requested at dedicated time intervals
(e.g. on device failure). Further, broadcast messages are desired in order to notify
all bus members at the same time instant. In addition, the communication interface
ideally provides synchronization features in order to sequence multiple controller nodes.
When high power DUTs are tested, the power output of the supplies may be limited.
Therefore, the DUTs need to be tested intermittently and the controllers need to be
synchronized.

The interface also needs to withstand a harsh environment in the test system
laboratory while based on standard microcontroller periphery modules in order to use

37

3 The MoPS Distributed System

commercially available hardware. Further, hot plug capability of the nodes is desired,
so the test operation does not need to be interrupted when a single node is replaced.

Finally, the communication interface should be able to be configured and pro-
grammed in a simple way. The used protocol stack should have little performance
impact on the controller node.

Among possible candidates, CAN (see Section 2.1.2) and switched Ethernet (see
Section 2.1.3) fit well to the requirements. Ethernet provides high data rates but
requires advanced microcontrollers with built-in medium access control unit to fully
utilize the increased bandwidth. The advantages of CAN are that many automotive
controllers feature built-in CAN modules and our expected small message sizes keep
the bus traffic at a reasonably low level.

3.2.2 CAN-based Interface

Node Board

D
U
T

D
U
T

D
U
T

D
U
T

D
U
T

D
U
T

Node Board

D
U
T

D
U
T

D
U
T

D
U
T

D
U
T

D
U
T

CAN 1 – Management Bus
CAN 2 – Data Bus

Figure 3.6: MoPS Setup using CAN Interface

The first version of SAM was implemented together with a CAN communication
interface [20]. Figure 3.6 shows the basic setup. The communication is split up among
two CAN interfaces, according to the principle of different interfaces for different
tasks [75]. In this implementation, the interfaces Diagnostic and Maintenance (called
“Management Bus”) and Configuration and Planning (called “Data Bus”) are used.
Therefore, it is possible to separate the diagnostic traffic required for status information
of the node and the test procedure from reading the measurement data.

Extended CAN message types as shown in Figure 3.7 are used, where the 29 bit
identification part is further divided into four fields: the four most significant bits are
used to describe the frame type, which provides the possibility to increase priority for
global system messages. Further, they are used to distinguish between node-to-host

38

3.2 Communication Channel

28 25 24 20 19 14 13 0
Frame Type

4 bit
Command

5 bit
Node Address

6 bit
Offset
14 bit

Figure 3.7: Customized CAN ID format

and host-to-node messages. A special frame type is also used for baptize messages.
The 5 bit command part is used to describe the intention of the message. Then, the
6 bit assigned address of the bus participant follows. Thus, up to 63 controller nodes
can be connected, where the special address “0” is reserved for the host. Finally, a
14 bit file system offset is used to provide the address for writing and reading data to
either the configuration or the measurement memory range of the smart controller
node. Specifying the address offset in the message identifier enables the use of all
eight data bytes in the message payload area. Not all possible bit combinations of
the frame type and command fields are used, so further extensions can be applied
without changing the presented arrangement.

A summary of the commands supported by the first version using CAN communi-
cation is given below:

REQBPT (0x01) Request Baptize – CAN does not intrinsically support addresses
of the bus participants. Therefore, upon booting, the node reads its internal
unique ID and builds a special baptize frame. This frame contains part of the
unique ID in the offset field in order to reduce the chance for collisions. The full
unique ID as well as the software version of the node is transmitted in the data
part of the CAN frame. After sending the request frame to the host, the node
waits for the assignment of a short address. This mechanism is borrowed from
the TTP/A protocol [76].

ASSBPT (0x02) Assign Baptize – The host receives the full unique ID of the node
and retrieves a short address from the node look-up table. The same short
address is assigned for the same node. The assignment frame is accepted by all
nodes who do not have a short address yet. Upon reception of this command,
the unique ID in the frame data part is compared to the internal ID by each of
the nodes, to check whether the broadcast frame is meant for the specific node.

NODEINFO (0x03) Node Info – The host may query a node about its information.
The node replies with the following information: its hardware version, its
software version, its test type and its test software state.

39

3 The MoPS Distributed System

WRTCONF (0x04) Write Node Configuration – The host transfers configuration
data to the node based on the offset given in the CAN message ID. Writing the
configuration is only possible when the test software is in the IDLE state. Up
to 8 B of data can be written.

READCONF (0x05) Read Node Configuration – The host requests reading the con-
figuration memory. The addressed node responds with 8 B of data from the
given offset.

READMEAS (0x06) Read Measurement Data – The host requests reading the separate
measurement memory. The node responds with 8 B of data from the given offset.

READCRC (0x07) Request Configuration CRC – The host tells the node that it has
finished transmitting the configuration data and requests the CRC computation
of the configuration memory. The node will reply with the computed CRC value,
so that the host knows whether or not all data has been written correctly.

INITHW (0x08) Initialize Hardware – In order not to interfere with the test hardware,
the test node’s periphery is set to a tri-state input in IDLE state. When
the configuration has been written correctly, the host sends the initialization
command with the expected CRC value. Upon reception, the node will configure
its hardware interfaces according to the previously transmitted configuration.
The node is now ready for testing.

DEINITHW (0x09) De-initialize Hardware – The host tells the node to deactivate
its hardware interfaces and clear the configuration memory. This command can
only be requested for initialized or stopped tests.

RUNTEST (0x0A) Start Test Procedure – After proper hardware initialization, the
testing procedure specified in the configuration may be started.

STOPTEST (0x0B) Stop Test Procedure – A running test may be requested to stop
any time. The node will finish its current task and stop the test immediately
afterwards.

TESTSTATUS (0x0C) Test Status – While NODEINFO returns information about
the testing node, TESTSTATUS is used to report the status of the test, like the
number of DUTs alive.

BUTTON (0x0D) Push-Button Request – During the test setup, it may be important
to know the position or address of a particular node. The test node may provide
a push button for the operator, which when pressed will inform the host software
about this event. Therefore, the individual node can be identified.

40

3.2 Communication Channel

IDENTIFY (0x0E) Identify Request – Similar to the BUTTON event, the operator
may find a specific node among several connected nodes. The IDENTIFY
message flashes the selected nodes’ Light Emitting Diodes (LEDs) in order to
visually find the node.

SELFTEST (0x0F) Self-test Data – Like writing and reading the configuration mem-
ory, the nodes’ self-test memory can also be read.

In a prototype setup for a device qualification test, reasonable transmission rates for
the configuration phase could be achieved. In particular, an improved HTOL system
was developed [19]. The final setup consists of 20 microcontroller units, each of them
operating multiple DUTs. The microcontrollers receive their test configuration via
the CAN interface in less than 1.5 s. Since the microcontrollers operate autonomously,
downloading this configuration is not time-critical and usually done only once per
qualification test that runs for 1000 h. Two status information messages are polled
once every second for each connected node. Worst-case estimations for the maximum
allowed number of 63 nodes show less than 5 % bus load for the status and diagnostic
messages.

However, measurement data acquired by the microcontroller cannot be transferred
frequently. In the prototype test application, we had to reduce the transmitted payload
size to about 8.6 kB. Due to limitations of the CAN driver on the host, reading the
data takes in average 6 s for a single microcontroller node. Thus, measurements of
63 nodes can be read by the host software every 6.5 min. This time interval although
comparably large is sufficient, since measurements are stored only every 15 min to
30 min in a life test setup running for 1000 h. Nonetheless, when reading larger sets of
measurement data (in the order of a few MB), this limitation becomes a problem. To
solve this issue, we moved from CAN bus to switched Ethernet to increase the data
throughput.

3.2.3 Ethernet-based Interface

The availability of automotive microcontrollers with integrated Ethernet MAC enables
the use of a faster communication interface. Consequently, support for Ethernet
communication between the hardware nodes and the host computer has been added
in the MoPS system.

UDP on top of the IP is used for the MoPS test system architecture. UDP, a
connectionless communication mode, is very lightweight compared to the well-known

41

3 The MoPS Distributed System

TCP. To enable secure communication, Datagram Transport Layer Security (DTLS),
which is similar to Transport Layer Security for TCP connections, is available for
UDP connections [77]. Using Ethernet implies several requirements for the test node.
These being that for the data link layer (MAC) and the network layer (IP), unique
addresses within the network are required.

Setting the MAC address

It is possible to assign locally administered MAC addresses for Ethernet (see Sec-
tion 2.1.3). Setting the specific bit allows to freely choose the remaining bits while not
interfering with statically assigned global MAC addresses. As it would be very tedious
to assign the addresses manually, they are computed on per chip basis. The used
microcontrollers (XMC4500) feature an integrated 128 bit unique ID. These 128 bit
can be reduced using the 32 bit Ethernet CRC function and the MAC address can be
set before starting up.

Setting the IP address

Obtaining an IP address is usually done using a centralized DHCP server. Due to
restrictions in the lab environment, running a second DHCP server software on the
host system in addition to the standard office network environment is not allowed.
The risk of erroneously connecting the network interface used for lab operations to the
office network and, therefore, interfering with the infrastructure is too high. Further,
it is not desired to connect the test nodes to the office LAN, since it would allow any
user to access the test nodes and interfere with the test. Even when using encrypted
communication channels, the rather weak microcontrollers may easily be overloaded
by Denial-of-Service (DoS) attacks. Thus, it is first required for the host computer to
have separate network interface cards for the office LAN and the test system LAN.
Secondly, static IP addresses must be assigned.

Since assigning the MAC address is done automatically, a similar procedure is
used for the IP address. In order to reduce the possibility of address collisions, the
maximum possible private address space is selected. The class-A network 10.0.0.0/8
provides a private use network with up to 224 hosts [78]. The first and the last
address within such a Classless Inter-Domain Routing network always have some
special functionality assigned. Thus, not all possible addresses can be used for
individual nodes. Furthermore, the host computer and possibly networked laboratory

42

3.2 Communication Channel

Table 3.1: Example Node IP addresses

Device Unique ID MAC address IP address

Host n.a. globally assigned 10.0.0.250
Node 1 01810206 05e0014f 82060010

0a000000
02-00-ab-5b-23-94 10.211.174.1

Node 2 01810c06 06e0014f 82060010
0a000000

02-00-7f-a5-07-24 10.47.101.1

instruments must be connected on the same network. For that reason, a 16 bit CRC
is computed from the previously mentioned 128 bit unique ID. The final IP address
is then composed in the following way: 10.x.y.z, with x and y being the higher
and lower byte of the CRC result respectively. The last octet z is “1” for test nodes
and different for the host computer and other Ethernet based laboratory equipment.
Examples are provided in Table 3.1.

In contrast to CAN, Ethernet does not use a specialized identifier field. The header
fields contain the addresses for proper delivery to the targeted node. In order to send
instructions to the node, the data area of the frame has to be used. The payload field is
large enough to hold up to 1.5 kB. Even though the used lwIP TCP/IP stack [79] can
deal with fragmentation1, the performance hit on the microcontroller is not acceptable.
Therefore, using IP, up to 576 bytes IP data (up to 512 bytes UDP data) can be safely
transmitted, before fragmentation and reassembly has to be taken care of [80]. The
MoPS command format for Ethernet based communication is given below. The size
of the MoPS data field is limited by the size of the MoPS header.

Table 3.2: MoPS Ethernet message fields

Bytes Description

0 .. 2 Packet Type – The packet type field is a 3-character string. Currently,
CMD or LOG are possible. CMD is used for message from and to the
testing node. LOG messages are only sent from the node as debug and
informational messages.

3 Delimiter Byte – The colon “:” is used as 1 B delimiter sequence.
4 .. 11 Time – Absolute UNIX time stamp. The 32 bit number is printed as

eight hexadecimal characters.
12 Delimiter Byte

1http://lists.gnu.org/archive/html/lwip-users/2010-01/msg00094.html

43

http://lists.gnu.org/archive/html/lwip-users/2010-01/msg00094.html

3 The MoPS Distributed System

Table 3.2: MoPS Ethernet message fields

Bytes Description

13 .. 20 Fractional Second – Fractional seconds of the time stamp, also printed
as eight hexadecimal characters. The fractional part is given as number
of increments of the CPU clock of the current target microcontroller.

21 Delimiter Byte
22 .. 31 Packet Number – The message sequence number is printed as variable

width decimal number.
32 Delimiter Byte

33 .. 41 Command – Depending on the packet type, this field inserts a sub
command compared to the original CAN message commands. The sub
command is a human readable printed string.

42 Delimiter Byte
43 .. 52 Offset – The optional offset field is used to specify the memory location

for reading and writing to different memory sections. The value can be
given as either decimal or hexadecimal value prefixed with 0x.

53 Delimiter Byte
54 .. 511 Data – Up to 458 byte data can be included in a MoPS command

message. The data part is preceded by a delimiter byte. As the data
field is the last field and the length is known by the UDP and IP length
fields, binary as well as string data can be transmitted.

0 .. 511 UDP Payload – As the header is variably sized, a maximum size of
54 byte has to be considered. Including the 458 byte data part, the UDP
packet does not exceed the maximum size.

Compared to the CAN communication, the addresses for the Ethernet based com-
munication are computed from the internal unique serial number of the microcontroller
chip. Therefore, the baptizing commands (REQBPT and ASSBPT) are obsolete.
Further, the BUTTON command is not used anymore, because any test related
event can be sent using the newly provided EVENT command.

The remaining commands have largely the same functionality. However, new
commands are introduced: EVENT, PUBLISH, PRINT, and LOGLVL. The
following list explains the commands.

NODEINFO Node Info – The host may query the node about its information. The
node replies with the following information: version information about its used

44

3.2 Communication Channel

hardware and software, its software state; time and memory information; and
its Ethernet address information (unique ID, MAC address and IP address).

WRTCONF Write Node Configuration – The host transfers configuration data to the
node based on the offset given after the MoPS command. Writing configuration
is only possible, when the test software is in the CONFIG mode.

READCONF Read Node Configuration – The host requests reading the node’s con-
figuration memory. When the target node is in the CONFIG mode and there is
no node configuration being written, the Electronic Data Sheet (EDS) can be
read from this memory location (see Section 3.4.4).

READMEAS Read Measurement Data – The host requests reading the separate
measurement memory. Measurement data is written from various hardware
sources (Analog-to-Digital Conversion (ADC), Delta-Sigma Demodulator (DSD),
communication interfaces) via DMA controllers into the separate memory.

READCRC Request Configuration CRC – The host tells the node that it has finished
transmitting configuration data and requests CRC computation of the configu-
ration memory. The node will reply with the computed CRC value, so the host
knows if all data has been written correctly.

INITHW Initialize Hardware – In order not to interfere with the test hardware, the
test node’s periphery in the CONFIG mode is set to a tri-state input. When
the configuration has been written correctly, the host sends the initialization
command with the expected CRC value. Upon reception, the node will parse
the data in the configuration memory and initialize the FSM (see Section 4.2.3).
The node is now ready for testing.

DEINITHW De-initialize Hardware – The host tells the node to return from the
TEST mode to the CONFIG mode. In order to perform this command, the
test FSM must be in the IDLE state. Therefore, this command can only be
requested for initialized or stopped tests. The configuration memory is cleared
and filled with the EDS data.

STARTTEST Start Test Procedure – After proper initialization of the FSM, the test
procedure specified in the configuration may be started. This command enables
processing of events in the test program FSM.

45

3 The MoPS Distributed System

STOPTEST Stop Test Procedure – A running test may be requested to stop at
any time. The node sets the stop event for the test program’s FSM. It is the
responsibility of the test plan designer to ensure, a test can be stopped. This
requirement is checked by the Test Plan Builder (TP-Builder) software, before
the test plan is loaded onto the target node (see Section 4.3.2).

TESTINFO Test Status – While NODEINFO returns information about the testing
node, TESTINFO is used to report the status about the test. The current FSM
state and the full event table is sent to the host software.

IDENTIFY Identify Request – The IDENTIFY message flashes the selected nodes’
LEDs in order to visually find the node.

EVENT Set FSM event – The test node runs a reconfigurable FSM (see Section 4.2.1).
This command sets an event for the FSM.

PUBLISH Publish measurement memory location – In order for the host software
to know which memory area is dynamically allocated by different modules, the
location information is published (see Section 5.2.4).

PRINT Print log message – As the Ethernet communication channel has sufficient
throughput, log messages from the test FSM and the Lua interpreter can be
sent to the host software for further processing and storage.

LOGLVL Set log level – Using this command, the log verbosity of the hardware target
can be set. The following levels are available:

LUA FSM Lua code print or error message

SEVERE Severe errors that require program exit (e.g., the application ran out
of memory).

ERROR Error messages that cannot be recovered, but the program can continue
to run.

WARN Recoverable problem that you should be notified about (e.g., invalid
value in a configuration file, the default is used).

INFO Informational messages.

ENTRY Log entry and exit to all functions.

46

3.3 Distributed Control & Sense Node

PARAM Log entry and exit to all functions with parameters passed and values
returned (including global effects if any).

DEBUG General debugging messages, which is useful information that can be
output on a single line.

Using the Ethernet based communication interface, the measurement transfer data
rate is improved by a factor of 200 over the CAN based interface. Transferring 4 MB
of raw data to the host takes about 14 s, which is about 285.714 kB/s. It is not
favorable to ask the hardware target to send all of the data at the same time, as it
would overload the controller (the microcontroller will not be able to handle the test
procedure in the meanwhile) or the host (if multiple microcontrollers send all their
data at the same time). For that reason, measurement data is queried from the host
application one packet after the other. Reading the data from the microcontroller
requires both the request message and the reply message, thus adding a loop delay.

3.3 Distributed Control & Sense Node

The third foundation of the Modular Power Stress test system is the distributed
control node. Its main purpose is to run the test procedure in proximity to the tested
device or application. Thus, the controller has to receive the test configuration, parse
and execute it. Further, status of the tested application and various analog signals
need to be monitored.

The decision to use automotive microcontrollers that support the required tempera-
ture range was heavily influenced by the fact that microcontrollers – in contrast to
FPGAs – possess various readily-available peripheral modules like communication
and analog interfaces. The specific controller to be used was selected based on the
evaluation in three preliminary studies:

The first version of a local stress test microcontroller was called SmartMoPS, as it
is used to test Smart Power Switches (SPS) (see Section 3.3.1). In the meantime, the
investigation of the communication channel, as mentioned above, was already ongoing.
Therefore, a separate piece of hardware, the HTOL Node Board, was created and
investigated (see Section 3.3.2). Concurrently, the newly released, high-performance
automotive microcontroller series cross-market Microcontroller (XMC)2, using the

2https://www.infineon.com/xmc

47

3 The MoPS Distributed System

32 bit ARM Cortex-M4F core, was evaluated in a DC-converter test application (see
Section 3.3.3).

The findings of these projects lead to the miniaturization of the Node Board yielding
a very compact and capable distributed test node, the MicroMoPS. The hardware
and software features are explained in Section 3.3.4.

3.3.1 SmartMoPS

MCU

(dsPIC33FJ64)

Gate-Driver 1

Gate-Driver 2

Trans-

mission

Gate

SPI interface

(galvanic isolation)

ACUTE – DUT – Interface

DUT

(Smart Power Switch)

Current

Measurement

Temperature

Measurement

MCU-Board DUT-Board

H
iro

se
-C

o
n
n
ec

to
r - M

a
le

H
iro

se
-C

o
n
n
ec

to
r - F

em
a
le

Error-Out

(optcoupler)

Power

Supply

V gate1

I gate1

connect both gate drivers

Status out

SPI out

SPI in

S
u

p
p

ly
 / L

o
a

d

Ambient

Temperature

A
D

C

V gate2

I gate2
A

D
C

/C
M

P

A
D

C
/C

M
P

Figure 3.8: SmartMoPS – Intelligent Test Substrate

The SmartMoPS (see Figure 3.8) is a small, 2-channel, 8 bit digitally controlled
gate driver on a 50 mm× 60 mm substrate PCB for testing automotive SPS within the
ACUTE system [22,81]. The two gate drivers can each source and sink variable gate
current with 16 programmable levels (4 bit resolution). The SmartMoPS is used to
test various stress conditions on the power transistor test structures, before the actual
on-chip gate driver is finalized. The board is a modular extension that can be plugged
into the main DUT carrier board, which is used for conventional ACUTE testing. Up
to 4× 64 DUTs are tested in parallel in this test setup. The SmartMoPS features
a 16 bit microcontroller using the SPI interface to receive the configuration and to

48

3.3 Distributed Control & Sense Node

send back measurement and status information. Temperature, as well as voltages and
currents of the DUT can be measured. The real-time control unit of the ACUTE
system allows only sending 21 SPI commands per pulse cycle. Each tested device can
be individually addressed within the test system. However, no SPI return channel
is available in the climate chamber. Thus, the SPI protocol enables a limited set of
arbitrary waveforms to be applied to the DUT. Nevertheless, the analog measurement
data is used for the self-test procedure, gate driver calibration and verification.

Operating the microcontroller in the oven at ambient temperatures up to 125 ◦C
works very well. As stated before, the existing test system does not feature SPI return
channels, thus the SmartMoPS measurement capabilities are of limited use. The DUT
performance is still monitored and evaluated using the ACUTE system, which features
one voltage and one current measurement per tested channel. The SPI protocol is
very robust, even in the harsh environment where high load currents up to 200 A and
enormous current slew rates in the order of 1 A/µs are easily reached in proximity to
the digital control unit.

3.3.2 HTOL Node Board

The HTOL node is used to control a qualification test in an already existing climate
chamber infrastructure. Within the climate chamber, carrier boards with the tested
devices are located. The signal and control interface is located at the backside of the
climate chamber [20]. Therefore, it is not subjected to the full automotive ambient
temperature range. The node board has also been used to implement and verify the
first version of the communication interface (see Section 3.2.2). Figure 3.9 shows the
block diagram of the HTOL node board. It features a 16 bit automotive microcontroller
to provide the required CAN communication interface. The supply interface is used
for connecting the power supplies and the CAN interface. The connection from the
node board to the carrier board, which contains up to 8DUTs, is provided via the
signal interface. These signals include DUT supply voltages, digital control patterns
as well as digital and analog sense lines to monitor the DUTs.

Further, the guard and driver modules are implemented on the same PCB. The
guard module measures the DUT supply voltages and currents. The power supplies
are controlled via the host system and shared by all node boards. The driver module
consists of the digital output drivers and a digitally controlled voltage regulator. This
allows adjusting the output voltage to enable testing DUTs at their maximum rated
voltage or interfacing low-voltage devices.

49

3 The MoPS Distributed System

Driver Module

Guard Module

Smart Controller Node

I

Sense

CAN

uC

Supply

Driver

Supply

ADC

Vref

V

Sense

UID

Chip

Digital

In

MUX

Analog

In

MUX

Digital

Out

Signal Interface

DUT

Supply

(4)

Supply Interface

DUT

Board

ID

Signal

Button

Signal

LEDs

Driver

Voltage

Figure 3.9: HTOL Controller Board

The analog and digital signal conditioning blocks contain multiplexers to reduce
the vast amount of signals (7 channels × 8 DUTs) to a smaller number that can be
handled by the microcontroller. In addition, signal LEDs and a signal button for
simple location of the node upon request by the operator or through the host software
are available. Further serial interfaces conclude the board design. They are used to
identify the currently controlled DUT stress board and controller node.

The HTOL node board demonstrates that not only simple current patterns (see
Section 3.3.1 – SmartMoPS) can be applied, but also feedback from the DUTs can
be evaluated and processed at the location of the DUT. Consequently, only relevant
data needs to be transferred to the host system. The configuration sent to the
microcontroller defines the complete test setup for the tested device. After having

50

3.3 Distributed Control & Sense Node

received this data, the node board is able to autonomously perform the test procedure.
It reacts to status queries from the SAM host software, but also sends out event
triggered messages when it recognizes abnormal behavior of one of its tested devices.

3.3.3 DC-Converter Stress Board

P
W
M

External Devices Low Voltage Applica�on Module DUT Board

Logic

Environmental Chamber

IOUT

Electronic
Load

Power
Supply

Host
Computer

Control
Module

DUT

G
u
ar
d

Sw
it
ch

Po
w
er

In
p
u
t

Po
w
er

O
u
tp
u
t

IIN

VSENISEN

Analog
Controller

Ethernet

Figure 3.10: DC-Converter Board [82]

The DC-Converter stress board (Figure 3.10) has been designed to assess the
performance and reliability of point-of-load DC-DC converters for CPUs. Two research
investigations have been covered by implementing this test application:

The test application requires a controller to regulate the output voltage. Therefore,
a microcontroller based on the XMC family, the XMC4500, has been placed on the
application PCB along with a separate Dynamic RAM (DRAM) chip and Ethernet
communication. The microcontroller is used to access digital control lines of the power
conversion chip. Analog signals, such as current and voltage are read and provided
to the digital control loop that defines the PWM for the half bridge. Further, the
protection modules on the PCB are monitored in order to recognize the shutdown of
the test due to over-temperature or over-current. The DRAM is used to increase the
available memory of the microcontroller to store large amounts of analog measurement
data. The Ethernet interface is used to transfer the measurement data to the host
computer. This application does not yet have a configurable firmware, as it was not
required for the simple test. The stress level is set by the input voltage (which is set by
an external power supply) and the output current (which is consumed by an electric
load). The first investigation dealt with storing and transmitting measurement data.

The second evaluation considered the use of a scripting language to control externally
connected instruments. A special LuaVIEW module (see Section 2.3.2) has been

51

3 The MoPS Distributed System

created as a wrapper for instrument control. There, the API for the instrument is
defined. When the module is loaded with the LuaVIEW framework, the module
functions become available in the Lua environment and can be used to interact with
the instrument using LabVIEW based VISA drivers. The benefits of using the Lua
script language to define the test procedure in contrast to hard coded routines in the
target host application are the following:

• The test engineer is capable of creating dedicated test routines, without the
need to understand the complex software architecture.

• LuaVIEW based modules can be created, tested and debugged independently of
the host application. Further, these modules can be reused in other applications
if required.

The use of LuaVIEW quickly enhances the experience with LabVIEW based software.
However, there are several drawbacks of the LuaVIEW library. Not all deficiencies
are due to limitations of the library, but also because of how LabVIEW works.

• Lua was created with a powerful API in mind [83]. Thus, Lua is not a stand-
alone library, but a set of functions that can be used within a C-based program
or library. Within the C programming language, it is possible to register callback
functions to the Lua state. These functions are executed, when the appropriate
Lua functions is called. Lua within C allows arbitrary nesting of C→Lua→C
function calls.

In the stand-alone LuaVIEW library, only LabVIEW→Lua or Lua→LabVIEW
function calls are possible. This restriction is mainly based on the missing
functionality of LabVIEW to register callback functions within a C-based library.
Since it is not possible to register LabVIEW Virtual Instruments (VIs) to the
LuaVIEW state, Lua function prototypes are registered with a function index.
Whenever LuaVIEW wants to execute such a registered function, the index is
returned to LabVIEW, where the function body can be implemented in a case
structure. The drawback with this solution is that the LuaVIEW engine is in
control of the execution. However, custom LabVIEW code can be called at any
time.

• Many programming languages have an exception handling mechanism for throw-
ing and catching errors. LabVIEW however is a data-flow based language.
Thus, jumps are prohibited eliminating throwing and catching errors. Lua,
which is based on the C programming language, on the other hand provides

52

3.3 Distributed Control & Sense Node

such a mechanism. When LuaVIEW experiences an error while executing the
script, the corresponding Lua state will be closed and an error will be reported
to LabVIEW. Unfortunately, this effectively terminates the script execution,
without the possibility to recover from soft errors by wrapping the LuaVIEW
execution into a proper LabVIEW based error handling.

The scripts are typically provided by users and thus errors are expected to be
present. Therefore, the Test-Plan-Checker (see Section 4.3.2) was created to
check the script code before it is loaded and executed.

The successful evaluation of the XMC microcontroller implemented on the DC
converter stress board lead to the design of an independent modular test control node
(see Section 3.3.4). To enable further test applications under the same framework, the
DC converter test board has been redesigned (see Section 5.4) to use the MicroMoPS
as plugable control node [82].

3.3.4 MicroMoPS

Figure 3.11: MicroMoPS Hardware Target

The findings of the three hardware related projects SmartMoPS – microcontroller
within the climate chamber – (see Section 3.3.1), HTOL Node – communication and
configuration via CAN bus – (see Section 3.3.2) and DC-DC converter – evaluation
of XMC4500, Ethernet and DRAM – (see Section 3.3.3) lead to the development of
a unified test execution hardware target, the MicroMoPS node. The requirements
for this small (50 mm× 100 mm) module have been gathered from various reliability
application engineers. The prototype test application is a 15 kW Power Factor Cor-
rection (PFC) converter stage for reliability assessment of the used semiconductor

53

3 The MoPS Distributed System

devices (see Chapter 5). This application requires several digital control and sense
lines, PWM output, analog measurement and DSD. The currently available hardware
(see Figure 3.11) features:

• The XMC4500 microcontroller based on the ARM Cortex-M4F processor

• Small form factor of 50 mm× 100 mm× 10 mm

• Automotive temperature range grade 1 (−40 ◦C to 125 ◦C [1]) and rugged
connectors for use in the climate chamber

• Ethernet communication (100BASE-TX) with autonomous MAC address and
IP address calculation derived from the internal unique serial number of the
XMC microcontroller

• 8 MB acquisition memory allows storage of 4 MSamples of analog measurement
data and digital responses (e.g. from SPI)

• 2 status LEDs to indicate run and error states

• 64 bit global time organized as 32 bit UNIX time and 32 bit fractional seconds

• 4 independent analog input modules capable of acquiring up to 24 input signals
with a resolution of 12 bit at rates up to 1.8 MHz

• 4 independent analog output channels with 12 bit resolution

• 12 General Purpose Input Outputs (GPIOs)

• 4 digital event inputs that can trigger events for the FSM

• 4 DSD channels to acquire analog data from galvanically isolated sensors (e.g.
in high voltage applications)

• 6 PWM outputs, divided into 4 units with single-phase output and 2 units with
an inverted output for half-bridge control

• 1 SPI bus with 2 chip select lines to provide a digital interface to the test
application

• Up to 32 software timers with 1 ms resolution for triggering custom events in
the test FSM (see Section 4.2.1)

54

3.4 The MoPS-CORE Microcontroller Firmware

All IO modules can be directly interfaced using the Lua script engine running on
the microcontroller firmware (see Section 4.1.3).

The use of the MicroMoPS microcontroller target has proved to be a powerful
control module. Running the closed loop Proportional-Integral (PI) controller for
this PFC power converter application could be reasonably handled while acquiring
measurement data. The FSM based test plan design (see Section 4.2.1) simplified the
start-up routines for this test application. The DC-DC converter stress test board
(Section 3.3.3) is currently under redesign to enable plugging the MicroMoPS board.

3.4 The MoPS-CORE Microcontroller Firmware

The main reason to use microcontrollers is justified by the possibility to interact with
the integrated on-chip hardware modules like analog converters, timers and digital
interfaces. The MoPS-CORE microcontroller firmware is the common firmware for all
XMC-based microcontroller hardware targets.

Listing 3.1: MoPS-CORE main loop

1 void main_loop(void) {
2 while (1) {
3 measure_time();
4 handle_comm_msg();
5 guard_feed();
6 led_active();
7 handle_test_FSM();
8 }
9 }

Due to CPU resource limitations and memory constraints, the firmware is not based
on an actual operating system. The different tasks run cooperatively (Listing 3.1).

The time of the main loop is measured for statistical and investigation purposes. The
time results are transferred to the host software upon request with the NODEINFO
message. Next, messages that are received via the Ethernet communication channel
are parsed. These messages either ask for the microcontroller status information,
transfer the test procedure, or control the test by setting events in the FSM. Further,
MoPS-CORE also contains a watch-dog guard, which is a hardware timer capable
of resetting the microcontroller, unless it is periodically reset by the software. This

55

3 The MoPS Distributed System

guard can be enabled using Lua module functions and is reset once every iteration in
the main loop. The firmware supports two status LEDs as visual indicators in case
the controller software got stuck and the guard has not been enabled. Finally, the
firmware runs the FSM handler (see Section 4.2.1) for custom test procedures. Within
the states of the FSM, Lua code can be executed to interface the hardware modules
of the microcontroller.

Several microcontroller hardware units may generate ISRs that need to be handled
asynchronously in the background. Therefore, these routines either map those requests
to events in the FSM diagram, or trigger DMA transfers as defined by the test
procedure.

3.4.1 Lua Interpreter

It is not sufficient to only change the parameters of the test program (like timing
values or output voltage levels), but it is usually required to also change the behavior
and sequence of certain actions. The requesters of these application tests are typically
company-internal hardware designers and product engineers. They prefer directly
configuring a test sequence rather than low-level programming of microcontrollers.
Thus, a dedicated firmware concept with a simple run-time configuration approach is
required.

A set of commands is desired which can be executed directly on the microcontroller
to interface the hardware. Of course, one could build a simple parser for reading
commands and parameters from a textual input. However, since low-level programming
of microcontrollers is difficult, this task is error-prone and a very large amount of
commands must be implemented. Furthermore, such a design is inflexible and poses
many risks to introduce bugs. The favored solution is to use an interpreted language,
which also supports features such as loops, conditions and functions. Creating an
interpreter that allows also features like loops and function calls is not trivial and
can be a time-consuming task. Fortunately, several interpreters for use on embedded
systems already exist (see Section 2.3).

Lua has been chosen for the implementation, because it is small, utilizes a minimum
of RAM while still being powerful. Further, Lua does not only contain the VM
on the microcontroller, but also the compiler is available on the target. However,
the real benefit comes with the simple yet highly sophisticated C-API that allows
an implementation of custom modules and hardware access routines. The interface
between the Lua VM and C-functions is provided by a modifiable virtual stack. Thus,
the C-code may receive parameters from Lua function calls and can provide results
back to the Lua virtual machine. The configuration of the firmware and the available
hardware modules is described in Section 4.1.3.

56

3.4 The MoPS-CORE Microcontroller Firmware

3.4.2 Hardware Interaction

A variety of different applications should be addressed without the need to change
the basic firmware of a given microcontroller target. Especially, different applications
require different functions on the external pins of the microcontroller.

Listing 3.2: Accessing a GPIO class module instance

1 pin = gpio("p5.10") -- obtain GPIO instance
2 pin:setOutput() -- configure as output
3 pin:write(1) -- set pin to high

In order to provide simple script commands as depicted in Listing 3.2, the Lua
C-API is used. For each hardware unit, either modules (see Table 3.3) or classes (see
Table 3.4) are provided. Modules are used when a global state is accessed or modified.
Classes are used when access to an individual instance of a hardware periphery unit
is desired in a direct way.

Table 3.3: MoPS-CORE Lua modules

Module Description

comm Query information about the communication module
dram Query information about the external DRAM
guard The system guard observes the code running and may reset the micro-

controller
uc Interact with the microcontroller test control (the FSM)
time Query the microcontroller time

Within a test script, the user first needs to obtain a GPIO instance by calling
the single public function gpio from the gpio class-module. The invoked C-function
then takes care of setting up the periphery access and returns the Lua object pin. A
Lua metatable is used to protect the Lua object instance from incorrect usage [83].
Consecutively, the user may configure the pin as output and write a value to it.
According to this simple example, we have implemented classes for most of the
periphery units available on-chip (Table 3.4).

57

3 The MoPS Distributed System

Table 3.4: MoPS-CORE Lua classes

Class Description

ai Analog input – measure voltages
ao Analog output – provide voltages
dsd DSD – decodes the delta-sigma bit stream
eru External event detection – can set events in the FSM
gpio GPIO – control a single digital pin
gpioport GPIO Port – multiple pins grouped together
pic PI-controller – provides closed loop control between AI measured voltages

and PWM output, the controller function is implemented in C and
provides improved performance over Lua based functions

pwm PWM – controls a hardware timer
spi SPI – send & receive SPI messages
timer System timer – sets periodic or one-shot events

3.4.3 Background Routines

In addition, various background functions need to be carried out by the controller
such as closed loop PI control, PWM generation and analog waveform acquisition.
Modern microcontrollers already provide powerful hardware modules that can do most
of the required work in parallel to the software code. Therefore, the implemented
Lua modules described above are used to configure these hardware units through the
microcontroller registers.

Some hardware periphery modules will return data, like the ADC or serial interfaces,
or trigger interrupts. In order to avoid race conditions and deadlocks when writing
data to the memory, the following two options are provided:

Listing 3.3: Non-blocking example of AI module

1 scan0 = ai("scan0") -- create analog module instance
2 scan0:setChan(1) -- select channel of analog module
3 scan0:setFreq(10000) -- set 10 kS/s
4 scan0:setMem(100) -- set storage for 100 samples
5 scan0:start(100) -- acquire 100 samples in the background

58

3.4 The MoPS-CORE Microcontroller Firmware

Listing 3.4: Blocking example of SPI module

1 spi0 = spi("spi0") -- open SPI instance
2 spi0:configure(1000, 16) -- configure 1 MBaud, 16 bit
3 spi0:setCS(0x1) -- select device at select line 1
4 recv = spi0:sendReceive(0xc0de) -- receive data into variable recv

Non-blocking: Within the FSM test procedure, the user code has to allocate a memory
region for the specific module by stating the required number of samples to
be stored (see Listing 3.3). The result data is then written by the DMA
controllers. The data can be accessed later, upon completion of the DMA
transfer. Additionally, the host can also request data from an allocated memory
region via the communication interface.

Blocking: The user code may read the requested hardware resource, but the command
will not return a result until the value is available (see Listing 3.4). Due to
this blocking nature, further script commands as well as the FSM handler are
delayed. Therefore, only commands with deterministic execution time may use
this option.

For the PI-controller, input and output signals as well as the control loop parameters
are configured via Lua script commands. Now the invoked ISR function can be written
in a purely functional style. This gives a large performance benefit compared to
functions executed in Lua. However, the controller algorithm is fixed and may only
be altered by adding a new routine in the C source code.

3.4.4 Electronic Data Sheet

The MoPS test system needs to verify, if the available distributed test nodes are
capable of running the requested test. Therefore, the configuration of the specific
hardware targets has to be known. The Test-Plan-Builder (Section 4.3.2) requires
this information so that the test design engineers know about the specific modules
while creating the test plan. The SAM host software (Section 3.1) checks if the test
requirements are satisfied with the currently connected hardware targets. For that
reason, every hardware target generates and provides an Electronic Data Sheet (EDS).
The idea of EDS is borrowed from smart transducers [84]. The EDS includes configu-
ration information that is otherwise only present in the microcontroller development
environment DAVE.

59

3 The MoPS Distributed System

Upon booting, the microcontroller firmware uses the pre-defined compiled hardware
configuration to generate a JSON string to be transferred to the host application.
The JSON library C source code has been taken from the Comprehensive C Archive
Network3. When the EDS is read from the controller, it is uploaded to the MoPS
project web server. The Test-Plan-Builder downloads new and updated EDS files from
the web server and uses them for displaying visual hints (like code auto-completion)
to the user.

The EDS is organized into three parts:

hwInfo Hardware information – The name, IP and MAC addresses as well as unique
ID can be found here. In addition, the Git version hashes for the software (the
MoPS-CORE firmware) and hardware (the configuration mapping) project can
be found here to help investigate errors. The Git version information are also
important for the TP-Builder to provide the correct set of available functions.

events FSM events – A list of available hardware target events for the FSM is given
in this list. These events can be triggered by creating an instance of the Lua
object referring to the appropriate modules.

modules Lua accessible hardware modules – A list contains the names of the of the
available modules on the specific hardware target. Thus, the test engineer
knows how to access the hardware periphery modules on the microcontroller.
Additional information, such as DRAM size, the number of chip select lines for
the SPI module instances or analog scaling information, is given. The use of the
analog scaling information is described in Section 5.2.4.

3.5 Peripheral Modules

The modular stress test system described in this thesis deals with subjecting DUTs
to electrical power pulses. Therefore, a control and sense module can in fact provide
the pulse patterns, but cannot apply high current or high voltage pulses on its own.
Several additional hardware modules are required according to Figure 3.1. These
modules are connected via parallel, serial or mixed bus interfaces and operated by the
control module, while the test application software is running.

The design of these additional hardware modules is not focus of this thesis. They
are created by the hardware developers at KAI [82]. For the first implementation,

3http://ccodearchive.net/

60

http://ccodearchive.net/

3.5 Peripheral Modules

mainly parallel control of the modules is implemented. In the test application, the
control module only needs to provide digital pins for switching the module on or off
and reading back the status. Special features of the modules can be dealt in the test
procedure.

The following modules have already been designed and used depending on the
requirements. Each module can be individually identified using a unique serial number
chip to track the usage and to provide analog scaling information (see Section 5.2.4).

Carrier Board A carrier board is provided to hold the following modules. The carrier
board routes the connection signals to the modules with or without further
attenuation. The modules are typically connected with rugged connectors.
However, module features may also be placed directly on the carrier PCB to
save the number of separate modules required.

DUT Module The DUT is usually placed on a separate PCB to be able to exchange
worn out or failed DUTs faster and to test multiple DUTs with the same hardware
setup. In some cases, device sockets for the DUTs are also used.

Bias Module A bias module is required to apply defined voltage levels or currents
while measuring device characteristics.

Guard Module The guard module is responsible for protecting the device subsystem
from catastrophic failure of the DUT. In case the DUT draws too much power
from the supply, the guard prevents the system from damages by switching off the
power from the individual DUT. The limits for the guard are set by the control
module and may be changed dynamically to follow the power consumption of
the DUT during its test.

Line Module Active modules or passive impedances are required for specific applica-
tions like short circuit tests [85].

Load Module To load the DUT module with nominal operating current within the
test application, active or passive load modules are required. Using the proposed
setup of Figure 3.1, active power recirculation may be possible to save energy
and help cooling the test setup.

61

3 The MoPS Distributed System

3.6 Chapter Summary

This chapter introduced the MoPS distributed test system. By dividing the required
tasks into smaller modules, they become manageable more easily. Further, the re-use
of existing hardware and software modules is greatly encouraged.

The host architecture SAM is described. Based on the actor model, it defines loosely
coupled software modules. Different actors perform different tasks. By introducing
a hierarchy, the main software loads a Test Actor, which in turn distributes the
test configuration among several Node Actors. The test description is executed in a
separate Lua Actor. The Node Actors act as virtual representatives of the physical
embedded test and control modules. Further support actors exist to control the
external instruments and the communication channels to the hardware targets.

A brief overview of the event based communication mechanisms CAN and Ethernet
is given. The first prototype test application used the CAN communication channel.
Due to limitations of the effective CAN data rate, the succeeding projects implemented
an Ethernet based communication channel. The benefit of using the actor-based
software architecture made this transition very simple. All that had to be done was to
add another communication actor. The use of Ethernet increased the usable payload,
thus reducing the number of messages required to transfer the acquired measurement
data.

In order to define and design a capable embedded hardware target, three studies
were carried out. By developing a small microcontroller test application (the Smart-
MoPS), the use of microcontrollers in the automotive ambient temperature range
was successfully evaluated. The HTOL Node Board demonstrated the versatility
of combining a fixed firmware and configuration via the communication channel.
However, since the HTOL Node Board suffers the limitations caused by the CAN bus
and the microcontroller processing power, the ARM-based XMC microcontroller was
evaluated. Based on the results, a microcontroller hardware target for productive use
with the MoPS test system is presented.

The firmware for the microcontroller is described. The Lua scripting language allows
custom test programs to be executed in a fixed firmware. To access a microcontroller
hardware periphery unit, Lua class modules (through the use of Lua metatables)
are provided to the user. Two possible function call paradigms are available to read
data in the background or to directly provide data in the Lua VM. The hardware
configuration of such a microcontroller target is reported with an Electronic Data
Sheet.

62

4
System Configuration & Programming

Special cases aren’t special
enough to break the rules.

(Tim Peters)

Contents
4.1 Configuration Options . 64

4.1.1 JSON Format Enhancements 64
4.1.2 SAM Configuration . 65
4.1.3 Configuring the MoPS-CORE Firmware 67
4.1.4 DAVE MoPS-CORE App 71

4.2 Test Plan Definition . 71
4.2.1 Test Plan Model . 72
4.2.2 Test Plan File Structure . 76
4.2.3 Test Plan Transformation & Transfer 77

4.3 System Integration . 78
4.3.1 Communicating State Machines 78
4.3.2 Test Plan Builder . 79

4.4 Software & Documentation Deployment 81
4.5 Chapter Summary . 83

The MoPS test system is a complex distributed yet flexible system. Consequently,
it requires simple features and interfaces for the users to configure and control

the system. To setup the system, the externally attached instruments need to be
specified, recognized and validated upon system start-up. The modules required for
the test procedure provide an EDS which is used to download the test code properly
and to read back the analog and digital measurement values.

The configuration parameters of the different modules and systems need to be
remotely accessible in order to create a test procedure that can be correctly executed.

63

4 System Configuration & Programming

The Test-Plan Builder (Section 4.3.2) is capable of reading various configurations and
providing the proper features to the test code.

This chapter describes the configuration possibilities of the host software and the
hardware targets in Section 4.1. The organisation and creation of the test plan are
explained in Section 4.2. Section 4.3 describes the integration of the microcontroller
test nodes into the SAM host application. Last, the distribution of the software, the
API documentation and the hardware configuration files are explained in Section 4.4.
Parts of this chapter have been published at the 13th IEEE International Conference
on Industrial Informatics in 2015 [72].

4.1 Configuration Options

MoPS is not only a single test system, but a general architecture to be used for different
test applications. Similar to the already existing ACUTE and ARCTIS systems,
multiple test system instances with varying configuration settings are required. As
mentioned in Chapter 3, multiple applications using the same host software have been
covered: The HTOL test system (see Section 3.3.2), the DC converter test system
(see Section 3.3.3) and the prototype implementation (see Chapter 5) are controlled
by the SAM host program (Section 3.1).

In order to support such flexibility, configuration files are provided. Depending on
the application usage, JSON-files and C-files are available. JSON based configuration
is used for all applications that run on a standard host computer. C-file based
configuration is used for the C-source code for the hardware targets. Using pre-
processor directives, certain code sections are enabled or disabled.

4.1.1 JSON Format Enhancements

The configuration parameters for the SAM host software (Section 3.1), the test
plan created and exported by the TestPlan Builder (Section 4.3.2) and the EDS
(Section 3.4.4) are based on the JSON text format. Using the evaluation results from
Section 2.4.3, the JSON format provides a human readable text that can be read and
written by the TP-Builder application as well as the LabVIEW host software.

For configuration files, comments within the file next to the configuration vari-
able are vital to explain certain parameters to the user or to provide an example

64

4.1 Configuration Options

value. Further, a quick and simple way to disable parts of the configuration is very
important during testing and for the debugging of the software code. However, the
original JSON specification does not include comments. In order to make comments
similar to JavaScript comments available, the code of the Github-hosted, free project
strip-json-comments1 was ported to enable that functionality for LabVIEW based
software. Therefore, C++-style comments // and /* */ are now possible for JSON
files readable by the SAM LabVIEW application.

4.1.2 SAM Configuration

The host software SAM needs to load its test system deployment configuration from
the local configuration file. The JSON file format has been chosen because of the
benefits listed in Section 2.4.3. The SAM.json configuration file is organized into
the sections tools (Listing 4.1) and instruments (Listing 4.2) as well as several
numerical arguments to enable special features and configure the timing of broadcast
messages. Various external applications, tools and libraries are used together with
the MoPS test system. However, not every MoPS test system instance requires all of
these dependencies.

Listing 4.1: SAM tools configuration

1 {"tools":[{
2 "name":"java",
3 "install dir":"",
4 "version info":"-version",
5 "update URL":"",
6 "version URL":""
7 },{
8 "ClassName":"SAM Tool Jar",
9 "name":"tpchecker",

10 "install dir":"<data>/lib/",
11 "version info":"-V",
12 "update URL":"https://server/directory/tpchecker-latest.jar",
13 "version URL":"https://server/directory/version.txt"
14 }]}

The tool section describes external programs that are additionally used with SAM.
The main purpose of this interface is to make use of already available software without

1https://github.com/sindresorhus/strip-json-comments commit: 69a1a17

65

https://github.com/sindresorhus/strip-json-comments

4 System Configuration & Programming

the need to re-implement existing functionality. As an example, Java is required to
run the TP-Builder tool (see Section 4.3.2). The fields for a tool configuration are
explained below:

ClassName The Character Lineator library can load child classes of the configuration.
In the example above, the tpchecker tool is a Java application and therefore
requires a slightly different calling syntax.

name The name is used within SAM to reference to the requested program.

install dir Installation directory – the path to the program. If this is not specified, it
will be read from the operating system path environment variable.

version info The required command line parameter to get the program version of the
used tool. This version information is used together with the next two Uniform
Resource Locators (URLs) to update the program automatically through SAM
(see Section 4.4).

update URL The URL to the most recent available binary release of the tool.

version URL The URL to a file describing the latest available version of the tool.

Listing 4.2: SAM instruments configuration

1 {"instruments":[{
2 "ClassName":"SI PSU",
3 "Name":"PSU1",
4 "Address":"GPIB0::1::Instr",
5 "Type":"Agilent_HP66"
6 },{
7 "ClassName":"SI Load",
8 "Name":"Load1",
9 "Address":"GPIB0::2::Instr",

10 "Type":"HHPMLI_0100"
11 }]}

The instrument section describes externally attached devices to be operated by
SAM for running the test procedures. In order to know which instruments are available
when loading a test plan, the connected instruments must be specified in the test
system configuration. Upon starting the SAM host software, an Instrument Actor
is created for each entry in the list. The Actor receives the configuration of the

66

4.1 Configuration Options

instrument and is further available for commands being sent to the device using the
given name. The available instruments for a test system are also reported to a web
server, so that the TP-Builder application (Section 4.3.2) can refer to them while
creating the test procedure. The fields for the instrument configuration are defined
below:

ClassName The class name specifies the LabVIEW class to be loaded for each type
of instrument. The LabVIEW class specified the available API functions, which
differ for example between power supplies and external loads.

Name The name is used for communicating with the instrument within the test
procedure.

Address The address is a VISA resource to specify the communication port SAM can
talk to the instrument. It is possible for SAM to automatically list connected
devices. However, if two instruments of the same type are available, this may lead
to conflicting configurations. Further, communication interfaces like Ethernet
have a too large address space for SAM to search for all connected devices.

Type The type specifies which specific instrument driver needs to be used. Various
vendors implement only a subset of the standardized commands [63] for their
instruments, therefore requiring custom codes to be sent to the devices.

4.1.3 Configuring the MoPS-CORE Firmware

The general description of the MoPS-CORE microcontroller firmware can be found in
Section 3.4. The MoPS-CORE firmware has been designed in a way that easily allows
creating different configurations, depending on the requirements. The configuration of
the microcontroller hardware target is performed within the microcontroller C source
code.

The required tool chain for compiling the MoPS-CORE firmware for the XMC
microcontroller is the Infineon DAVE development platform. DAVE is used to configure
the pin assignment of the microcontroller, because it contains the hardware models
that are required to perform validation of the selected pin combinations for the selected
microcontroller. Pre-processor switches are used to compile only the code sections
that are required for a given target. A simple C-header file MoPS_config.h within
the root directory of the DAVE project enables support for the different peripheral

67

4 System Configuration & Programming

on-chip hardware modules. The purpose is to reduce the code size, when support for
certain periphery modules is not needed.

As indicated by Listing 3.2, the test system user needs to write simple Lua scripts to
access the microcontroller periphery units. However, there are several steps required
in order to provide the firmware image to access the physical pin in such a way (see
Figure 4.1).

Lua script

Lua class modules
Name

mapping DAVE handles

Physical pins

use instance
lookup use

describe

Figure 4.1: Accessing a physical pin through Lua

Physical pins

Using DAVE, a specific pin location can be selected by the user, or automatically
assigned by the solver algorithm within DAVE. To create a configuration, the user
typically selects only the number of hardware resources he or she wants to use with
a new hardware target (e.g. 8GPIOs, 4PWM units, . . .). The solver tries to find a
possible combination and reports the automatically chosen pins. The user, nonetheless,
has the ability to manually assign the desired pins. When the configuration is not
possible, because the remaining available pins do not provide the selected function,
an error is reported. The resulting pin mapping is then used to design the target
hardware circuit and PCB layout. In theory, this workflow can save several hours
compared to finding possible valid pin combinations manually.

DAVE handles

When a DAVE configuration has been created, the source code can be generated
from this model. Using this process, DAVE provides C-data structures (so-called
“handles”) and API functions to use the selected periphery modules in the C-based

68

4.1 Configuration Options

Listing 4.3: The DAVE digital pin description

1 const IO004_HandleType IO004_Handle0 = {
2 .PortNr = 5U , /* Mapped Port */
3 .PortPin = 10U, /* Mapped Pin */
4 .PortRegs = (IO004_PORTS_TypeDef*)PORT5_BASE /* Base Address */
5 };

application. Additional source libraries (e.g. lwIP for Ethernet communication)
are also copied to the source directory. Usually, the generated handles provide the
microcontroller port and pin description as well as the address of the register that
needs to be accessed to operate the module (see Listing 4.3).

Name assignment

When the physical pin is known and accessible with the previously explained C
structure, a meaningful name is assigned. The C-source file MoPS_config.c specifies
the link between the DAVE resource handles and the MoPS-CORE system code. An
excerpt of this mapping can be seen in Listing 4.4. This code section specifies two
GPIO resources (“p5.10” and “p5.11”) to be usable within the Lua script. Using this
loosely coupled name-based interface allows a very simple configuration for different
hardware targets using the same base firmware.

Listing 4.4: The MoPS-CORE digital pin to name mapping

1 #if EN_MoPS_GPIO
2 #include "mops_core/MoPS_gpio.h"
3 const MoPS_gpio_reg MoPS_gpio_reg_handles[] = {
4 { .name = "p5.10", .handle = &IO004_Handle0, },
5 { .name = "p5.11", .handle = &IO004_Handle1, },
6 END_OF_LIST,
7 };
8 #endif

More complicated modules, like the analog input, also contain information about
the measurement ranges or scaling information. By providing this information to
the firmware, the scaled values can be used directly in the Lua script. Further, the
MoPS-CORE firmware can also generate and provide the EDS (see Section 3.4.4).

69

4 System Configuration & Programming

Lua class module

We may recall from Listing 3.2 that within the Lua script the constructor function
gpio("p5.10") was called. When Lua encounters the function call to gpio, the
registered constructor C-function will be called by the Lua VM (Listing 4.5).

Listing 4.5: The MoPS-CORE digital pin Lua constructor

1 static int gpio_construct(lua_State *L) {
2 const char *str = luaL_optstring(L, 1, "");
3 const MoPS_gpio_reg *entry = NULL;
4 entry = get_handle_by_name(MoPS_gpio_reg_handles, str);
5 return gpio_init_module_instance(L, entry);
6 }

First, the string argument – the name of the desired hardware module (i.e. the pin)
– is taken from the Lua stack interface. Next, the DAVE handle has to be found by
searching through the mapping of Listing 4.4. Finally, the module instance can be
initialized using the named entry from the configuration list. The return statement
specifies the number of elements placed on the Lua stack interface and is 1 on success
(a Lua object has been created) and 0 on failure. Error handling is not included in
this simple example, but required when the user provides an unknown instance name.
In this case, the Lua variable is nil and a debug message may be sent to the host
system.

The created module instance is a Lua user data object protected by a metatable.
The metatable serves two purposes: first, object oriented access using the colon-
operator can be provided. Second, incorrect usage – like calling PWM methods on a
GPIO instance is prohibited because the metatable is checked first.

Lua script

Finally, the Lua script code pin = gpio("p5.10") can be used (see Listing 3.2) to
control the corresponding microcontroller pin 5.10 (see Listing 4.3) defined with
“IO004_Handle0”.

70

4.2 Test Plan Definition

4.1.4 DAVE MoPS-CORE App

Since writing C code is difficult and error-prone, a GUI for DAVE has been devel-
oped [24] using the Software Development Kit included in DAVE. The idea is to
provide a very minimalistic interface to the test engineer where he or she selects the
number of desired hardware units. The assignment of the microcontroller pins is either
performed by the DAVE solver, or can be done manually if required. The DAVE
tool also provides the pin list via the “Resource Mapping Information”, so that the
engineer can create the layout of the hardware target. The engineer can then assign
user specific names to the hardware instances or use the names provided by default.
The name assignment in the configuration C-file (see Listing 4.4) is done by the DAVE
App, thus no manual C programming is required anymore. Hence, test engineers can
easily create a firmware configuration specifically tailored for their test application.

4.2 Test Plan Definition

In order to develop a test plan suitable for a modular test system, the test requirements
need to be considered. By investigating typical power electronics test scenarios, it
became evident that the test program on the controller has to take care of:

• Applying configuration, digital and analog stress test patterns.

• Reading system responses and measurement values.

• Receiving and executing messages from the governing test handler on the host
(i.e. “host messages”, especially start and stop software events) in order to
proceed to the test sequence where dependencies on external hardware are
defined.

• Handling trigger signals generated by the application or microcontroller periphery
(i.e. interrupt events)

• Evaluating and reacting on internal states (i.e. measured analog signals, return
values from digital interfaces)

• Running background services for sending and receiving messages and transferring
measured data to the host.

71

4 System Configuration & Programming

4.2.1 Test Plan Model

The bullet items from the list above can be identified as actions and events. An
action is the sequence of instructions which is to be carried out by the controller in
order to perform a specific task and evaluate the result. An event is either triggered
by internal modules in the controller or externally through the test application and
requires the controller to perform an action. Given these two basic terms, the non
real-time behavior of a test procedure resembles the FSM model [86,87].

The reaction to an event can be described by a transition in the state diagram.
While the controller is in a certain FSM state, it continuously evaluates all possible
events and switches state accordingly. Most of the time, a state switch should not
occur, e.g. when the controller is waiting for a special trigger to arrive. This implicit
behavior can be modeled by the unconditional @else event, forming a transition from
each state to itself in a loop. In order to execute a state only once and immediately
move to the next state, this loop needs to be cut. This can be achieved by manually
pointing the @else event to the next state.

The information whether an event has occurred is stored in a fixed-size, pre-allocated
table indexed by the event number. Thus, the microcontroller ISRs and the main
loop may modify the table, since no dynamic memory allocation – as found in a
queue-based system – is required. Furthermore, locking of this global table is not
required, as event occurrences are set (by hardware ISR or software) and cleared (by
the FSM handler described below) by independent instances.

EVENT

TASK

INIT
IDLEstart

CLEAN
TESTstop

@else
@else @else

@timer0

start

@eru3

@else

Figure 4.2: Simple controller state machine

72

4.2 Test Plan Definition

A simple example of a state machine structure for such a test sequence is given in
Figure 4.2. Once the microcontroller has finished booting, it waits for the reception
of a new state machine description via the serial communication interface. It parses
the contents and builds up the directed graph. Finally, the controller starts executing
the state machine with the IDLE state. While being in the IDLE state, no user
definable actions can be carried out and only background services are being processed.
These background services are required to transfer the configuration to the controller
and convert it into the state machine. The IDLE state is also the final state and the
controller can be stopped or the FSM structure may be changed.

Upon reception of the start event from the host, the FSM will propagate into the
INIT state, perform the one-time setup procedures given by the test description
and automatically change into the TEST state indicated via the @else event. While
in the TEST state, the automaton in this example listens for the hardware-events
@timer0 (periodic time-triggered work load) and @eru3 (external events – when e.g.
the external analog comparator exceeds a given threshold) and the software-event
stop (for stopping the test).

While running the FSM, the action (i.e. custom test code) needs to be executed.
There are two possibilities for attaching the action to the FSM: either to the state
or to the transition. This results in a list of transitions with 3-tuples or 4-tuples
respectively: If the code is attached to the state, it will be executed continuously
while the FSM is in the state. The 3-tuple transition consists of the current state,
the triggering event and the new state (currentState, event, newState). In this
case, the name of the state is synonymous for the name of the function as state names
must be unique in this representation. If the code is attached to the transition, the
resulting 4-tuple has the additional field function, because the event names are not
unique in the FSM (i.e. the same event can cause a transition from multiple states)
(currentState, event, newState, function).

The representation with the larger 4-tuple requires more elements per entry, but
usually fewer states to model a test procedure compared to the version with the
3-tuple (see Figure 4.3). Figure 4.3a requires a separate state to run the initialization
code once, whereas in Figure 4.3b, the initialization code is executed at the transition
from the IDLE state to the TEST state. In both examples, the looped code is
related to the @else event of the TEST state. In Figure 4.3a, the event is required to
continuously enter the TEST state and execute the attached code. In Figure 4.3b,
the @else event is further used to stay in the TEST state, but the code is executed in
the loop transition from TEST to TEST. After evaluating both possibilities, it was
decided to use the approach of Figure 4.3a assigning the code to the state. The reason

73

4 System Configuration & Programming

IDLEstart INIT
once

TEST
loop

run @else @else

(a) FSM model using 3-tuples

IDLEstart TESTrun
once

@else
loop

(b) FSM model using 4-tuples

Figure 4.3: FSM model comparison

Table 4.1: State transition table describing Figure 4.2 using 3-tuples

currentState event nextState

1 IDLE start INIT
2 INIT @else TEST
3 TEST stop CLEANUP
4 CLEANUP @else IDLE
5 TEST @timer0 TASK
6 TASK @else TEST
7 TEST @eru3 EVENT
8 EVENT @else TEST

being that placement of the script code inside the state is easier to understand and
can be implemented straight forward in the TP-Builder application (see Section 4.3.2).

FSM diagrams can easily be converted into C-code, compiled and transferred to the
controller for execution. However, alteration of the procedure (e.g. by adding another
state and its corresponding events or synchronization with the host or other controllers)
requires a skilled programmer who is capable of implementing these changes as well
as performing recompilation and finally flashing the firmware. This solution is not
favorable for practical test plan development and debugging in the test laboratory.

Alternatively, allowing the states and transitions to be reconfigured while the FSM
is in a specific state (the IDLE state) in order to execute arbitrary FSM diagrams
improves the process considerably. Therefore, the controller may receive a state
transition table as given in Table 4.1. The table is constructed by enumerating all
transitions between states. This allows for a full reconstruction of the state machine

74

4.2 Test Plan Definition

diagram. To simplify the diagram and to reduce the size of the table, the implicit
loop transitions via the @else event are neither stored nor transferred.

The transition table is composed on the host computer where the test plan is
created. It is then converted into a serial form in order to be transferred via the
communication interface. A pair of states and their linking event are converted into
numerical IDs each and then collected as a 3-tuple, which represents the transition.
The controller receives the list of 3-tuples and reconstructs the table in its internal
RAM.

Data: transitionTable, currentState
Result: newState

1 newState ← currentState;
2 foreach transition in transitionTable do
3 if transition.origin == currentState then
4 if transition.event == ELSE then

/* save the state for the @else event, it will be used if
no other event occurred */

5 newState ← transition.newState;
6 continue;
7 end
8 if eventOccurred(transition.event) then

/* the event has occurred; update newState and exit */
9 newState ← transition.newState;

10 clearEvent(transition.event);
11 break;
12 end
13 end
14 end

Algorithm 1: State machine handler

The FSM handler, as presented in Algorithm 1, then traverses the states in a simple
way. If none of the events match the events listed in the transition table, the current
state is kept. Therefore, the newState variable is assigned beforehand (Line 1). While
iterating through the table, only transitions that originate from the current state are
considered. If the current state contains an outgoing transition using the @else event,
it is saved and the search algorithm continues querying the table in order to match a
possible triggered event (Line 4). If the current state contains a transition event that
has actually been triggered, the new state is immediately assigned and the search is
complete (Line 8).

75

4 System Configuration & Programming

Data: transitionTable, currentState
Result: newState

1 newState ← currentState;
/* only inspect outgoing transitions from the current state */

2 foreach transition in transitionTable[currentState] do
3 if transition.event == ELSE then
4 newState ← transition.newState;
5 continue;
6 end
7 if eventOccurred(transition.event) then
8 newState ← transition.newState;
9 clearEvent(transition.event);

10 break;
11 end
12 end

Algorithm 2: Improved state machine handler

The search behavior is improved by storing the outgoing transitions from each state
in a tree-like data structure indexed by the current state (Algorithm 2). The updated
algorithm performs a lot better than Algorithm 1 by only searching through a limited
number of transitions.

4.2.2 Test Plan File Structure

General FSM tables Oven plan

Test Name

Test FSM

FSM label

FSM type

Transitions

Functions

DUT Name

Slot

Target IP

Target FSM

Load board

Figure 4.4: Test plan structure

76

4.2 Test Plan Definition

The transition table from Table 4.1 can easily be converted into the JSON serialized
form for storing on file or database servers and for loading the test procedure into
the test system. The test plan contains general information about the test, the oven
plan and multiple FSM tables. There is one main FSM – the so-called Test FSM – in
the test plan, which is run on the host system. This master FSM can synchronize
multiple hardware targets and may also control externally connected instruments such
as power supplies through additional API functions available in the SAM application.

The oven plan contains information about the tested devices and applications.
Especially the position within the test system and the used target hardware identified
by the IP address are included. Further required components are summarized with
the load board entry which is also identified and can be uniquely traced.

The FSM tables are marked by a string label. The Test FSM and the hardware
target FSM entries link to these tables. Thus, multiple hardware targets may run the
same test procedure while the test plan only contains this description once. The FSM
tables contain the above mentioned transition table to reconstruct the FSM graph.
The Functions entry contains the user code for each state in the transitions table.

4.2.3 Test Plan Transformation & Transfer

Embedded controllers, like the XMC microcontroller used in the MicroMoPS hardware
target (Section 3.3.4), possess only a limited amount of memory to receive and parse
the test procedure. The test plan JSON file however can easily grow to several kilobytes.
In order to provide the test code to the hardware target, some transformations are
required.

The transition table is converted into a list of triples as described in Section 4.2.1.
String names of the states and transitions are converted into integers to reduce
memory consumption and speed up the parsing. In addition to the FSM table, the
microcontroller also receives the Lua script code. For each FSM state, a Lua function
is created with the contents of the user defined Lua script code. The script is compiled
into the Lua VM when the test plan is loaded onto the microcontroller. Then, the
functions defining the code in the FSM state are known to Lua and can be executed
during each iteration while the FSM runs.

77

4 System Configuration & Programming

4.3 System Integration

The microcontrollers are connected directly to the units under test. Therefore, they
can easily apply patterns and monitor the application. However, a typical power
stress test also involves external instruments, such as power supplies and active
loads as displayed in Figure 3.10. These devices are usually shared between several
test applications running on the same host system. The microcontrollers may not
be powerful enough to perform advanced analysis procedures or store results to
a centralized data location. Furthermore, the FSM on the microcontrollers runs
independently of the host application. Thus, a hierarchical approach is required to
control the overall test routines.

4.3.1 Communicating State Machines

As can be seen in Figure 3.2, the FSM concept is present on all three hierarchy levels:
The hardware targets use the state machine handler and the Lua interpreter to access
the on-chip hardware periphery. Each Test and Node Actor can create a dedicated
FSM Actor for custom data analysis and storage, for communication with the next
lower or higher hierarchy level (sending events and transition notifications) or for the
purpose of instrument control (Test Actor only).

By sending events via the communication interface, state machines from different
hierarchy levels can be synchronized. Once the test definition is loaded, the host
program can send events to the hardware targets in order to start the test execu-
tion. It can also verify that an external instrument has been configured properly.
Therefore, two independent state machines are created; one for the host and one for
the microcontroller. Figure 4.5 demonstrates a minimum example for such a test
definition:

1. In the Host FSM, the start event is triggered (e.g. by pressing the “Start test”
button on the GUI).

2. The FSM proceeds to the START state and executes the associated Lua script
code: First, the voltage of the power supply is set. Afterwards, a separate start
event is sent to the microcontroller target via the communication interface.

3. The Host FSM transits to the RUNNING state and waits for test completion
(indicated by the stop event).

78

4.3 System Integration

IDLE

START

start

RUNNING

@else

STOP

stop

@else

IDLE

INIT

start

RUN

@else

CLEANUP

stop ABORT

oor

@else

@else

Host FSM Lua code Node FSM

psu:setV(14)
sendEvent(“start”)

pwm0 = pwm.init(“pwm0”)
a0 = ai.init(“sync0”)
a0:setF(100000)
a0:start()

Figure 4.5: Host to Node FSM synchronization

4. The microcontroller receives the start event and can now move to the INIT
state where it executes the assigned Lua function.

All function calls visible in this picture are custom module implementations on top of
the Lua standard libraries. In addition, the Host-FSM supports reading measurement
values from the microcontroller. According to the evaluation of the response, the
Lua-based user script may invoke a transition in the FSM.

4.3.2 Test Plan Builder

When drawn graphically, the FSM model is easy to understand. However, creating
this test plan structure in text format is tedious and may lead to errors. Therefore,
the Test Plan Builder (TP-Builder) master thesis project was carried out to provide a
GUI tool [23]. The TP-Builder aims to ease drawing of interactive FSM diagrams
and entering the code into specific states (Figure 4.6).

79

4 System Configuration & Programming

Figure 4.6: Test Plan Builder

While performing the operations on the FSM diagrams, TP-Builder continuously
verifies the FSM structure and the entered Lua script code in order to provide a
functional test procedure. According to the test plan model, at least the following
checks are performed:

FSM structure A route must exist from the IDLE to any FSM state and back. This
condition is required to be able to stop a test procedure (by returning to the
IDLE state) and transfer a new test description.

API functions The Lua script code may only call API functions that are available
for the selected target hardware and firmware version. When an unknown
function is called during execution of the test, the currently executed Lua script
of the corresponding state is interrupted. Further, a soft error is triggered by
setting the @error event. Therefore, the test software can react to specific errors
allowing the test system to return to a safe state. This mechanism is similar to
exceptions known in other programming languages.

80

4.4 Software & Documentation Deployment

Events The two API functions setEvent("event") and sendEvent("event") are pro-
vided by MoPS (see Section 4.3.1) to trigger events in the current and deeper
FSM levels respectively. TP-Builder checks that the events exist on the corre-
sponding FSM diagram. Further, it is verified that events present in the FSM
can be triggered during the execution.

Oven plan Within the TP-Builder, DUT names and positions, their assigned test
microcontroller and the used FSM are described. The availability of the micro-
controller target is also checked by looking up the selected target in the online
published list.

Thus, the tool guarantees that every FSM graph is able to return into the IDLE
state as required by the model (Section 4.2.1). Further, the TP-Builder fetches the
API documentation (Section 3.4) and the hardware description (Section 3.4.4) which
allows checking of the user entered Lua script code against the used hardware target
configuration and target firmware version.

Test Plan Checker

The TP-Builder can also be run in a command line interface mode, where it will
perform only the validity checks of the provided test plan file. The host software SAM
uses this interface to check the loaded test plans before they are distributed among
the specified hardware targets.

4.4 Software & Documentation Deployment

One important aspect of software development in general is the process of acquiring
and updating the required software tools. The main software projects and their
libraries are developed and distributed using Git repositories. The location of the
binary distributed tools is described in the SAM configuration (Section 4.1.2). Upon
start-up, SAM reads the version information of the currently installed tools and
compares the local version with the remote version. If the remote version differs, SAM
downloads and installs a fresh copy.

In order to distribute the tools like the TP-Builder, a web server has been set up
(Figure 4.7). The build tools in the separate projects are able to generate and upload
the documentation as well as the compiled binary. Currently, there is no database

81

4 System Configuration & Programming

https://server/MoPS/
CORE

eds
v1.9

classes/
modules/
index.html

v1.10
...

SAM
config/
v2.2

...
v2.3

...
TP-Builder

bin
version.txt
tpbuilder-latest.jar

Figure 4.7: Distribution server structure

application on the server. Therefore, only privileged developers are able to update
files on the server.

The first directory CORE contains configurations and documentation of the MoPS-
CORE microcontroller firmware. The EDS from the various hardware targets are
stored in the directory eds. Within the versioned directories (v1.9, v1.10, . . .) the
API documentation for the use of the microcontroller firmware is located. The HTML
documentation is extracted from comments added to the C source code using the
LDoc tool2. LDoc is a Lua documentation tool similar to the well known JavaDoc3

system. It is capable of reading Lua source files, comments within Lua source files and
special comment annotations from C source files. Therefore, the literate programming
style is supported [88].

In the second directory, SAM, the API documentation is provided in the same way
through LDoc generated HTML files. SAM provides a LabVIEW script that extracts
the available functions into dummy Lua source files that can be processed by LDoc.
Furthermore, the config directory is located within SAM. There, the configuration
settings for the different SAM test system instances are stored. These settings include

2https://github.com/stevedonovan/ldoc
3http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

82

https://github.com/stevedonovan/ldoc
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

4.5 Chapter Summary

connected external instruments like power supplies and electronic loads reported by
SAM. Thus, the TP-Builder can obtain this configuration and provide the user with
correct Lua function options.

Finally, the directory TP-Builder contains the compiled version of the TP-Builder
application. The version.txt file is used by SAM to update the local file, since
it is used to validate the loaded test plan through the command line interface (see
Section 4.3.2).

4.5 Chapter Summary

This chapter describes the enhancements to the JSON format, which have been
implemented in the libraries used for serializing and deserializing the test plan and
configuration data. Through the configuration features, the SAM architecture can
be deployed to multiple different test systems in a simple way without changing the
general software. Further, the configuration options include settings for automatic
updates of provided tools (e.g. the TP-Builder) and libraries. External instruments
are abstracted and therefore can be changed on the fly – without the need to change
the referenced name in the test plan. In addition, the specified instruments are checked
during loading the device drivers.

The configuration concept of microcontroller periphery is presented. It has the aim
to provide a generic microcontroller firmware for yet unknown target hardware designs.
As a result, a named hardware module reference that is accessible by the Lua script is
given as a Lua class module. When creating the class instance, the named reference is
used to look up the physical pin in the name mapping of the DAVE handles. Access
to the hardware pins is provided by Lua functions wrapping the DAVE API functions.

To be able to execute user provided script code and react to events from the hardware
periphery units, a special test plan model has been developed. It makes use of the
FSM model, where the user script is executed within the states and transitions can be
caused by either software or hardware events. The test plan file contains several FSMs,
as it specifies a test for multiple targets. Further, the host FSM is also described,
which can synchronize and sequence hardware targets. In order to synchronize the
FSMs on host level and microcontroller level, a communication mechanism has been
introduced. The host provides an API function so that an EVENT message is sent to
the hardware target. The TP-Builder tool helps the creation of such test plan FSMs
and scripts.

83

4 System Configuration & Programming

The executable software files as well as the documentation are provided on a web-
server accessible to all users within the local intranet. The TP-Builder retrieves the
documentation to provide extensive help for creating the test plan files. The server is
further used to update dynamically loaded components of the SAM host software.

84

5
Prototype Implementations

Adding functionality is not just
a matter of adding code.

(Wietse Venema)

Contents
5.1 Test Plan Generation Work Flow 86
5.2 Test Execution . 87

5.2.1 Lua Test Code . 88
5.2.2 MoPS Lua RPC Library . 90
5.2.3 FSM Visualization . 91
5.2.4 Measurement Data Acquisition 92
5.2.5 Instrument Control . 94

5.3 Power Factor Correction Boost Converter 95
5.3.1 Static Load Test . 96
5.3.2 Intermittent Load Test . 98

5.4 Point-of-Load Converter . 100
5.4.1 Static Load Test . 101
5.4.2 Dynamic Load Test . 101

5.5 MicroMoPS Test . 102
5.5.1 Test Procedure . 102

5.6 Chapter Summary . 103

This chapter deals with the prototype implementations of three MoPS test appli-
cations. The presented applications have different requirements, but the same

general framework (MoPS) has to be used. It is intended to show the flexibility of this
modular concept. Beforehand, the general test flow for the MoPS system is explained,
followed by applications with emphasis on the specific features used.

85

5 Prototype Implementations

The first application is a high voltage (600 V) PFC boost converter. The second
one is a low voltage (12 V) Point-of-Load (PoL) buck converter test application.
The last application described is the functional test procedure for the MicroMoPS
microcontroller target, which is also implemented in the same MoPS framework.

This chapter concludes with a summary and comparison of the projects and the
common features used.

5.1 Test Plan Generation Work Flow

DAVE
Configura-
tion (Name
Assignment)

MoPS
HW target
(Micro-
MoPS)

MoPS-
CORE
firmware

MoPS-
CORE

API docu-
mentation

Electronic
Data Sheet

(EDS)

MoPS
web server

TP-Builder
(local cache)

Oven Plan

Test Code
Description

Test Plan
(Code +

Oven Plan)

used

compile
FW

generate

extract

provide
SW

description

provide HW
description

update

validate
HW

validate
SW

export

export

SAM

load

validate HW & SW for target
download & run test

Figure 5.1: MoPS test procedure work flow

In order to run a test procedure on the MoPS system, a few steps are required. For
documentation purposes, a test plan file needs to be stored on a network file share or
in a database. The test plan is created by the TP-Builder, which requires information
about the available software and hardware.

As can be seen in Figure 5.1, the source code of the MoPS-CORE firmware is
used together with the hardware configuration settings (the DAVE handles and the

86

5.2 Test Execution

custom name assignment as described in Section 4.1.3) to create the MoPS hardware
target firmware. In this thesis, only one specific instance, the MicroMoPS hardware
target is presented. However, multiple software versions and hardware revisions
exist. Therefore, the MoPS-CORE project includes a script to generate the API
documentation. The features describing the specific hardware target are obtained
when the firmware is flashed onto the microcontroller. SAM or a special flash tool
can be used to extract the on-chip generated EDS. Both the hardware description
and the software description are put on the MoPS web server. Users can then access
this documentation on-line.

The work flow described up to here is static and requires only very few updates,
for example when a new hardware target is created. The following procedure may be
carried out without updating the documentation or description files on the web server.

The lab engineers use the TP-Builder to create the test plan for their test application.
The TP-Builder retrieves the documentation and uses it to provide features like Lua
code auto-completion. The user specifies the oven plan and the test code in the test
plan. The oven plan is used to assign a microcontroller target to the individual DUT
and test carrier board (see Section 3.5). When the user decides to export the test plan,
the TP-Builder validates both software and hardware descriptions and provides a
valid test plan on success. Then, the test plan can be loaded into the SAM application
running on the test system instance.

The exported test plan is stored in a JSON text format where SAM performs
another validation of the loaded file using the TP-Builder (Section 4.3.2). Finally, the
test code is distributed to the microcontroller targets and the test can be started.

5.2 Test Execution

Lua is used to execute script code within the LabVIEW environment. The similar
configuration of both microcontroller and host application allows the user to create
a hierarchical FSM layout (see Section 4.3.1). The main test FSM can monitor and
control multiple child FSMs. This feature is required later for complex test setups,
e.g. the intermittent load test of the PFC converter test.

87

5 Prototype Implementations

5.2.1 Lua Test Code

In the first version of SAM, the use of Lua for LabVIEW (see Section 2.3.2) was
investigated. When the stand-alone Lua interpreter library is used within C-based
projects, circular calling is possible. Both C and Lua support interfaces to be called
from the other language:

• the Lua script code can call C-based functions which operate with the Lua stack
interface

• the C-based code can execute a Lua script which may call C-based library
functions

Unfortunately, Lua for LabVIEW has a major drawback that originates from a
missing language interface. LabVIEW does not provide an interface for C-based code
to call VI functions directly. Thus, it is not possible for Lua for LabVIEW to have
this feature either.

The proposed solution by the Lua for LabVIEW developers is to use a special
Execute Iteration VI. There, the provided Lua script is executed until a function
call to a LabVIEW provided function occurs. In such case, the Lua VM yields and
returns a function index to the LabVIEW code, where the function call can be made.
Afterwards, the Lua VM must be resumed by calling the same Execute Iteration VI
again.

In order to run the Lua code from the test description (i.e. the FSM functions)
in the Lua VM, a separate wrapper loop needs to be created in the Lua script (see
Listing 5.1). First, the basic Lua library functions are defined (lines 1 to 3). The
second block (lines 5 to 9) lists all the FSM states and the Lua code given by the test
plan. Finally, the main loop (lines 11 to 17) is given. This script is compiled in the
Lua for LabVIEW VM before starting the test execution. Compiling a script in Lua
means to translate the textual representation into byte code.

When the test procedure is started, the iterative execution process starts. Then, the
functions are created in the VM and the main loop is run. Within the main loop, the
LabVIEW function FSM() (line 13) is executed. The function provided by LabVIEW
evaluates the events from the test FSM and returns the name of the state the FSM
is currently in, which is stored in the variable func. Next, one of the corresponding
functions (line 6 to 9) will be called (line 15). When the FSM is finished, the LabVIEW
function will return the Lua value nil, so that the evaluation on line 17 terminates
the loop.

88

5.2 Test Execution

Listing 5.1: Lua main loop for SAM

1 -- SAM Lua library functions
2 function pairs() return nil end
3 function list_iter() return nil end
4

5 -- Test FSM functions
6 function IDLE() end
7 function SEND_START() sendEvent(’start’) end
8 function RUNNING() end
9 function SEND_STOP() sendEvent(’stop’) end

10

11 -- Main Loop
12 repeat
13 func = FSM() -- get current state (=function name)
14 if func then
15 _G[func]() -- run FSM function
16 end
17 until not func

Several limitations have been investigated for this rather complicated setup:

• It would be possible to run the FSM evaluation in Lua, however the Lua VM
would then be in control continuously. In this case, the main loop must interrupt
periodically to poll for received messages, since the Lua VM is run in a separate
actor. However, adding another LabVIEW side call into the Lua wrapper loop
does not simplify the setup. Further, each API must be implemented twice, in
both the main loop script and the LabVIEW SAM software.

• When there is an error in the Lua script, the complete Lua for LabVIEW VM
is cleaned up and the test crashes. There is an error message describing the
problem, but the VM cannot be resumed. Since the test code is provided by lab
users, an error must be handled more gracefully than terminating the VM.

• Executing each FSM state code in a separate Lua VM is not desired, because
sharing variables between the different Lua VMs would not be possible. In
addition, creating and cleaning up an independent Lua VM state for each state
is a high performance hit.

89

5 Prototype Implementations

5.2.2 MoPS Lua RPC Library

In order to overcome these limitations of calling LabVIEW functions from C, the
concept of a Lua Remote Procedure Call (RPC) library has been presented [89]. The
Lua script interpreter is built into a shared library for use with LabVIEW. By careful
software design, the library can be compiled for both Windows and Linux platforms.
The reason therefore is to be able to run the same Lua test code on the host level
and on Linux-based embedded targets. This concept will be implemented in a master
thesis project [25]. The library interface is very simple:

Open library When loading the library, a local TCP port has to be specified, where
the library will connect to send RPC requests. Further, the Lua VM will be
initialized and the base libraries will be loaded.

Register function A Lua function name can be registered to a numeric ID. Whenever
the registered function is called, the library will perform an RPC to the previously
specified TCP port. All parameters from the Lua stack are sent in addition
to the numeric ID. After the RPC call, the results are placed back on the Lua
stack.

Run code The provided string will be executed in the Lua VM running in the library.
This library function is first used to load all the test code to the library and
later to run the function code for each FSM state.

Close library When the test procedure has concluded, the library can be unloaded
from memory.

By using TCP sockets and a generic library interface that is not tied to dedicated
API functions, the C-based Lua VM can now call pre-defined LabVIEW functions.
The working example is shown in Figure 5.2. The host application first has to open a
TCP socket and to provide the port number. Then, the library can be opened and
the API functions as well as the FSM state functions are loaded. Afterwards, the host
application waits for the library to connect to the provided socket. Now, three parallel
threads can be used to handle all communication without blocking each other:

Receive RPC This thread will wait for incoming RPC calls and forward them as
actor message, so that the RPC call can interact with the private data of the test
actor object. This data includes the FSM state of the microcontroller, test time
and programmatic references to interact with the test FSM as well as displaying
and storing test information.

90

5.2 Test Execution

Initialization

Main loop

Open
TCP
socket

Open library
&

load functions

TCP

port
Wait for
library

Handle
actor

messages

Receive
RPC

Call FSM
function

Figure 5.2: Interaction with the Lua RPC library

Handle actor messages This thread can receive actor messages and handle them
without blocking the RPC reception or being blocked by calling an FSM state
function.

Call FSM function The call of FSM functions is also split into a separate thread to
be able to receive RPC calls and actor messages in the meantime. The actor
message handling loop will send the function to be called after evaluating the
FSM transitions.

5.2.3 FSM Visualization

IDLE

INITstart
WAIT@else

RUN
@eru3

CLEANUP

stop

@else

Figure 5.3: Graphviz rendered image

When running a test application, an often requested feature from the users is to
visually see the FSM graph with the current state highlighted. The GUI of LabVIEW
based applications cannot easily render custom drawings directly. However, LabVIEW
has the capability to run external commands and display static images. Therefore, we
use Graphviz (see Section 2.3.3) to provide a real-time update of the FSM status. The
transition table described in Section 4.2.1 is converted into the dot graph description

91

5 Prototype Implementations

language (see Listing 2.2). Color markup can be added for the current FSM state
and the currently set events. These scripts describing directed graphs are further
processed with either the dot or the neato program, depending on the user preference.
The programs return image data (Figure 5.3), which can be directly displayed on a
LabVIEW GUI front panel.

5.2.4 Measurement Data Acquisition

Another very important feature for a modular test system is the possibility to acquire,
display and store analog measurement signals. The values sampled by the ADC are
quantized in a certain range (e.g. 12 bit describes a range between 0 and 4095) and
represent analog values in a specific range (e.g. 0 V to 3 V). Hence, a scaling function
is required to convert the digital values to voltages. Actual voltages are simpler to
read for the users. Furthermore, it is significantly easier to perform a comparison as
shown in Listing 5.2.

Listing 5.2: Analog measurement comparison

1 msr = adc:reads(1) -- read scaled channel 1
2 if msr > 1.5 then
3 setEvent("over_voltage")
4 end

Vsource G1 G2 G3
A

D

Figure 5.4: Analog signal path

Scaling of analog signals

However, typical voltages present at power test systems range up to several hundreds
of volts. Thus, it is very common to have a voltage attenuation between the source of
the signal (i.e. the input voltage of the converter) and the sink of the signal, the ADC.
Furthermore, the scaling operation may not be linear. Therefore, the gain function
can be described by an arbitrary function, allowing common arithmetic operations.

In the presented MoPS test system, each module (see Section 3.5) may add another
attenuation to the overall signal path. Figure 5.4 displays the path of such analog

92

5.2 Test Execution

signal. In this example, the source is attenuated three times, by the gain functions G1,
G2 and G3. Since the neighbouring stages may influence the gain function of a stage,
the overall gain function is the result of the convolution of the individual functions.

A simplified model, however, takes only the input and output impedances of the gain
stages into consideration (see Figure 5.5). Then, an additional resistive divider exists
between two succeeding stages. Its mathematical description can be implemented for
use on the microcontroller very easily.

−

+

fGain

V0
Ri

Vi

Ro

Vo

Figure 5.5: Analog gain model for a MoPS module

Transferring measured data

In order to transfer measurement data from the control and measurement nodes
(i.e. the microcontroller hardware targets), a publish-subscribe scheme has been
implemented. The microcontroller sends a publish message to the host application
to inform that is has allocated a particular memory area for acquisition of a specific
analog or digital signal. The publish message consists of the following elements as
specified with the Lua test script:

• the label of the analog module

• the address of the memory block on the DRAM

• the size of the memory block on the DRAM

• the sampling frequency (used for proper display of the acquired signal)

• a list of enabled channels for this module

93

5 Prototype Implementations

In the current implementation, the SAM host software automatically subscribes
to all published signals and is able to request the measured data. In the future, the
subscription may be performed upon request by the test procedure to reduce the
network communication and the computational effort on the host.

The measurement data is requested by calling the API function fetchMsr() in
the test FSM. The function accepts an optional table argument, where the desired
hardware targets IP addresses may be specified to fetch data only from selected nodes.

In the current implementation, all subscribed signals will be fetched at the same
time. Therefore, SAM will send a READMEAS message with the desired offset and
length to the hardware target (see Section 3.2.3). The microcontroller node returns
the data of the requested memory region to the host software. SAM receives this
packet and inserts the read data into its published variables storage. Since a signal
may consume more memory than is possible to transfer in a single UDP Ethernet
frame, SAM will request further memory regions. When all the data for the signal is
available, the binary data will be scaled according to the previously mentioned signal
model.

After scaling, the analog signal is displayed on the GUI interface and may be stored
for offline evaluation. In the near future, the data will also be available for online
evaluation within the host software.

5.2.5 Instrument Control

As described in Section 3.1.1, the test actor reserves the instruments actors required
for the operation of the loaded test plan. When an API function for instrument control
is called, the call is redirected to the concerning instrument actor controlling the
desired external instrument. Since these instruments are complex, they often report
status and errors when communicating with them. For that reason, it is important to
react to these reported conditions.

Typically, actor based systems are loosely coupled. Therefore, a path for returning
messages, which is a synchronous call, is usually not desired. Thus, reading data from
the instruments is not trivial. Measurement data obtained from the instruments can
be periodically reported to the assigned test actor. However, there is typically a delay
until the data is available for evaluation. In addition, when a command is sent to an
instrument, the possible error is not immediately known in the test script.

94

5.3 Power Factor Correction Boost Converter

As a result, it was decided to implement the instrument control API functions
synchronously with a timeout to reduce the impact of blocking. Before the command
is sent to the instrument actor, a return queue is created. Then, the message along
with the queue reference is sent. The instrument actor carries out the requested
command and the result values including a possible error information are sent back
to the waiting test actor using the provided queue reference. The timeout is used in
case the instrument command takes either too long to complete, or the instrument
communication fails. In this case, this error is reported to the Lua engine. It is the
responsibility of the test script to either ignore the error (in case of an soft-error
condition) or perform the required actions to shut down the test procedure.

5.3 Power Factor Correction Boost Converter

The Power Factor Correction (PFC) boost converter test is a high voltage supply
application stress test. The boost converter is a special kind of a power converter
that converts lower voltage into higher voltage by using a PWM controlled half bridge
and passive components. Such converters are usually present in switched mode power
supplies and photovoltaic converters e.g. in the smart grid [90].

The modular load board (refer to Section 3.5) holds the MicroMoPS hardware
target (Section 3.3.4). Further, a DUT board that features the actual half bridge
application including the power semiconductor drivers and measurement circuits can
be connected.

This application stress test has been proven to be a suitable evaluation for our
distributed test concept. The requirements for this application test are described in
the following:

• controlling the gate drivers of the power transistors

• measuring input and output voltages and currents

• performing a fast closed-loop PI control (100 kHz) to regulate the output current
and voltage

• monitoring the DUTs’ temperatures, voltages and currents

• identify connected load and DUT modules to provide individual calibrated
analog scaling information

95

5 Prototype Implementations

• operating multiple carrier boards in parallel at the same time

• controlling the external power supply and electronic load units for start-up
procedures

• performing an intermittent load test through individual control of multiple
hardware targets

Carrier Board
DUT Module

µMoPS= PWM
Drv

Drv

Active
Load

Power
Supply

AC
Line

Iout

Iin

Figure 5.6: Simplified PFC boost converter application circuit

Therefore, as indicated in Figure 5.6, the DUT module is connected to a carrier
board. The carrier board holds the application circuit components and connects the
external instruments. A MicroMoPS hardware target (Section 3.3.4) is plugged onto
each carrier board to perform the previously mentioned control and measurement
tasks.

5.3.1 Static Load Test

In order to learn about possible degradation mechanisms in the DUTs, static load tests
above the nominal operating condition are performed. Therefore, in situ monitoring as
well as protection mechanisms must be individually configured for each test application.

Depending on the actual test application, varying sequences may be carried out
to guarantee a specific run-time behavior during the test. In the case of the PFC
application, a sample start-up routine is described in Figure 5.7. Parts of the procedure
concern actions on the host layer (i.e. querying and configuring instruments as well
as observing the FSM state of the microcontroller nodes) and the remaining actions
(periphery modules interfacing the DUT and their measurements) are related to the
hardware target close to the DUT.

96

5.3 Power Factor Correction Boost Converter

start

PSU off

configure elec-
tronic load

initialize hardware tar-
get periphery modules

switch PSU on

DUT
input
voltage

enable PI control abort

no

yes

not OK

OK

Figure 5.7: PFC boost converter sample start-up routine

As the start-up and the run-time sequences differ between different stress tests, it
is important that these can be created and modified in a simple way. Therefore, the
possibility to create the test program using the TP-Builder (Section 4.3.2) is very
important. The actual test plan description for the PFC test can be seen in Figure 5.8.

In the left hand side, the host level test FSM is displayed. It controls the external
instruments and monitors the microcontroller. In the right hand side, the microcon-
troller FSM can be seen. There, the start-up routine, the continuous measurement
task (MSR) and the periodic report task (REPORT) can be recognized in the center.
Various monitoring signals (over-voltage and over-current detection) are connected to

97

5 Prototype Implementations

Figure 5.8: PFC test plan FSM created in TP-Builder

the event request inputs of the microcontroller allowing them to use the events eru0
and eru1 in the FSM for custom actions.

The Lua script and the sequence of states in the FSM can be changed very easily
by adding and removing connections between the states. Successively, the updated
test plan can be transferred to the microcontroller hardware target. Since the MoPS-
CORE firmware of the microcontroller allows changing the FSM during run-time,
the C-programmer can focus on providing a functional API. The test engineer who
understands the needs of the test application can focus on the test procedure.

5.3.2 Intermittent Load Test

Another scenario in the PFC test application is the intermittent load test. In this test
procedure, the individual test application is pushed to its thermal limit. Therefore,
the DUTs are turned on for a few minutes to heat up and then turned off to cool
down again (Figure 5.9). To save the number of required instruments, multiple tests
can be run interleaved using the same physical connection to the external PSU and
electronic load.

Therefore, a more sophisticated test plan compared to Figure 5.8 is required (see
Listing 5.3 and Figure 5.10). Within the MAIN state, the host observes the attached
microcontroller nodes’ FSM state (Line 6). When its active time has elapsed (indicated

98

5.3 Power Factor Correction Boost Converter

off

on

DUT1

off

on

DUT2

off

on

DUT3

0 2 4 6 8 10 12 14 16 18
off

on

time (minutes)

DUT4

Figure 5.9: PFC intermittent load test

Listing 5.3: Intermittent load test (partial host script)

1 -- FSM INIT state:
2 duts = getNodes()
3 key, currentDut = next(duts) -- first DUT
4

5 -- FSM MAIN state:
6 state = getChildState(currentDut)
7 if (state == "ENABLE" or state == "ACTIVE" or state == "DISABLE") then
8 -- currently running
9 elseif (state == "WAIT") then

10 -- current DUT has finished, switch to next
11 key = next(duts, currentDut) or next(duts)
12 currentDut = duts[key]
13 if (getChildState(currentDut) == "WAIT") then
14 sendEvent("enable", {currentDut}) -- turn on waiting
15 end
16 else
17 -- error: switch to next
18 print_log("DUT state "..state)
19 key = next(duts, currentDut) or next(duts)
20 currentDut = duts[key]
21 end

99

5 Prototype Implementations

Figure 5.10: PFC intermittent microcontroller test plan

by the occurrence of the @timer0 event in Figure 5.10) and it has returned to the
WAIT state (Line 9), the next DUT is selected and enabled (Lines 11 to 15). Using
such a procedure, a non-overlapping power utilization from the supply is guaranteed.

5.4 Point-of-Load Converter

The PoL converter is a DC-DC buck converter application. The aim is to provide
the low-voltage (1.2 V) supply for notebook, desktop and server CPUs. The PoL test
application [82] is similar to the previously described PFC application. However, the
DUT already contains both half-bridge power transistors. The voltage control of the
DUT is performed using a dedicated analog control chip. Therefore, the requirements
are as follow:

• interfacing the analog controller to provide set values

• communicating with the DUT using analog and digital interfaces

• DUT board identification for individual analog scaling and tracking

• measuring DUT voltage, current and temperature

• monitoring of DUT status, detecting its failure and controlling the guard module

• operating multiple DUTs in parallel

100

5.4 Point-of-Load Converter

• performing an intermittent load test through individual control of the external
loads input channels

The test application circuit is given in Figure 3.10. The task of the control module
is to observe the DUT and report measurements to the host application. The host
application controls the power supply and the external instruments.

5.4.1 Static Load Test

The PoL application requires a very similar start-up procedure. However, a guard
module is placed in the supply path before the actual application to prevent the
DUT from destruction on failure. This guard measures the current flow, compares it
to a pre-set value and switches off in case of an over-current event. Therefore, the
hardware target microcontroller also needs to check and configure this guard module.
In addition, the host software needs to check the external instruments.

During the static test, parametric values are obtained by performing analog mea-
surements using the built-in ADCs on the microcontroller node. These values are
stored in DRAM and transferred to the host application for visualization and storage
for offline evaluation. Possible derivations during the run-time of the test can be
monitored in situ – i.e. the devices need not be removed from the test application.
Thus, the test can be run without interruptions. The reproducibility of the stress test
is improved and the test time decreased.

5.4.2 Dynamic Load Test

The main test application for the PoL converter is the dynamic load test. Within the
typical application, a notebook or desktop CPU usually switches between idle and full
load in several steps. Therefore, the test procedure has to apply specific load profiles
to the DUTs.

Such an example profile is given in Figure 5.11. During one load cycle, the load
reaches 25 %, 50 %, 75 % and 100 % of the maximum load for 10 %, 10 %, 1 % and 5 %
of the cycle time respectively. The remaining time, the load is at 5 % of the maximum
load. The load cycles are then repeated during the overall test time.

One can imagine that this arbitrary load profile is changed very often. Through the
MoPS system, the test engineer receives the full flexibility of creating the test plan –
both FSM and Lua script. In the example above, a list of values is defined, where
each value is sent to the external instrument. Therefore, the host software and the
microcontroller firmware remain fixed.

101

5 Prototype Implementations

0 10 20 30 40 50 60

0

25

50

75

100

time / min

re
la
tiv

e
lo
ad

/
%

load profile

Figure 5.11: PoL test intermittent load profile

5.5 MicroMoPS Test

In contrast to the two previous application tests, the MicroMoPS test has been created
to evaluate the functionality of said hardware target. The MicroMoPS (Section 3.3.4)
consists of many components soldered onto its PCB. Parametric variations or wrong
components may have a serious impact on utilizing such component in a stress test.
Therefore, it is important to have functional control and measurement nodes available.
Up to now, more than 100 pieces of the MicroMoPS have already been manufactured.
Testing and verifying them manually is very tedious. The flexibility of the MoPS
system architecture allows the creation of a test procedure for this task.

A special carrier board, the MicroMoPS test board, has been designed. It features
connectors to interface each electrical signal from the MicroMoPS hardware target,
some analog filters and DSD modulators as well as a power supply connection. The
board can also be used in the lab for prototyping a test application before the actual
carrier board is designed.

5.5.1 Test Procedure

In order to test each individual peripheral module of the tested MicroMoPS, a set
of three test boards is required due to the large number of available functions. As
displayed in Figure 5.12, two auxiliary boards – so-called golden samples – are used to
apply stimuli and read responses from the MicroMoPS located between them. Some of

102

5.6 Chapter Summary

Auxiliary
Microcontroller 1

(AUX1)

MicroMoPS
under test

DUT

Auxiliary
Microcontroller 2

(AUX2)

GPIO

PWM

AO

SPI

GPIO

AI

AI

SPI

ERU

AI

AO

DSD

GPIO

PWM

AI

AO

filter

gain

filter

modulator

Figure 5.12: MicroMoPS test setup

the module interfaces require a transformation of the applied signal. Passive low-pass
filters are used to flatten the digital PWM output and sigma-delta analog converters
are provided to sample the analog voltages.

Since multiple microcontroller nodes are used within the same test, the SAM host
software can be used to synchronize the individual hardware targets. Using the
FSM approach presented in the previous chapter, such a test sequence can easily be
modelled and created:

The host application tells the three nodes to initialize their modules. Upon comple-
tion of the initialization, the nodes change their FSM state and SAM can successively
send an event to the AUX1 node, commanding it to apply the first pattern. The DUT
node then reads in the pattern and the host application compares the results. In such
way, all modules can be tested one after each other. While executing the test, the
microcontroller nodes and the host test FSM can print the results into log files. Thus,
a summary can be quickly obtained.

5.6 Chapter Summary

To run a test procedure using the MoPS system, many functional components need
to work together. The overall test plan work flow is as follows: The MoPS-CORE
firmware is compiled together with the configuration of the periphery modules. Both
the software (custom Lua API) and the hardware documentation (the EDS) are
provided on the intranet web server for viewing by the users and for the TP-Builder

103

5 Prototype Implementations

tool. Using the TP-Builder, the test plan can be created and verified for the specific
hardware target to be used. After exporting the graphical test description, this
test plan can be loaded in the SAM host software. It will download the test to the
microcontroller target and run the test.

The utilization of the LuaVIEW library has been described and discussed. It is
lacking some key features for a reliable use within the proposed SAM application.
Therefore, a custom solution for the Lua library using a generic TCP interface (the
Lua RPC library) has been described.

Users can follow the execution of the FSM in a graphical way. For that reason, the
Graphviz tools are used to render images of the current system state.

Analog signals measured in the test application are described using a multi-stage
signal model. The individual stages are defined with a gain function and junction
impedances. Thus, the microcontroller implementation performs reasonably well.
Waveforms of analog signals can be acquired and stored in the DRAM of the Micro-
MoPS hardware target. The host is notified using a publish-subscribe mechanism.
The measurement data are requested by the SAM host application. After the transfer,
they are scaled and displayed on the GUI as well as stored for offline evaluation.

External instruments are also controlled using Lua API functions within the Test
Actor of the SAM software. In order to decouple the actors and still retain a link for
reading measurement data, a separate return queue is used. When the instrument
fails to return the data after a timeout, the error is reported and the Lua test script
continues its execution.

Three different test applications are described. Two of them – being power applica-
tion stress tests – are similar. For that reason, the use of the MoPS system provides a
solid platform. Visual code representations like flow charts can be easily mapped to
the graphical test plan using the TP-Builder application. Therefore, creating, editing
and documenting test procedures becomes simple and intuitive. Furthermore, an
updated test plan can be immediately loaded and used without the need to change
neither the microcontroller firmware nor the SAM host application. The introduction
of communicating FSMs enables the triggering of transitions on the microcontroller.
Thus, multiple hardware targets can be synchronized and interleaved to e.g. not
exceed the possible peak power consumption.

The MicroMoPS test demonstrates the capabilities of the FSM communication. It
has distinct test plans for the microcontroller targets. The host application sends an
event to one of the auxiliary controllers in order to signalize that it must apply a
specific pattern. The tested MicroMoPS board is then requested to read the provided
signals and provide the results to the host application, where they can be verified.

104

6
Results & Discussion

If your experiment needs
statistics, you ought to have
done a better experiment.

(Ernest Rutherford)

This thesis introduces a new, modular concept for power electronic stress test-
ing. Previous systems modularity mainly focused on the availability of COTS

hardware for PXI systems. However, the software for these legacy systems has been
created for a single purpose with little re-usability for other projects.

6.1 Results

The presented MoPS test concept has been successfully implemented on the host level
by the SAM application and on the embedded target level by the microcontroller
firmware MoPS-CORE. The host acts as a server for distributing the test procedures as
well as for data collection from the hardware targets. In addition, it manages the loaded
test procedures by running Lua script code to synchronize multiple microcontroller
hardware targets and by controlling external instruments.

The MoPS test system is the framework for implementing the stress test applications.
The use of a small number of fixed components allows a small software development
team to maintain the test systems and to incrementally implement new features.
The required flexibility for the test procedures is provided by the embedded Lua
scripting language. By allowing the user to write his/her own test plans, custom FSM
descriptions and Lua scripts can be loaded and executed. Therefore, new physical
test system instances can be set up with little to no additional effort with respect to
the software design since the test procedures are not implemented as plug-ins, but
loaded as Lua script code.

105

6 Results & Discussion

The actions to be carried out during the test procedures have been modelled with
the FSM model. The benefit of using the FSM description is the possible inclusion
of external events (like interrupts from the microcontroller periphery) into the test
procedure description. In this thesis, a generic test software has been presented that
enables the user to modify the FSM structure.

In order to simplify the creation of these test plans, the TP-Builder tool has been
created. It gives direct access to the API documentation of the host and hardware
target software. Furthermore, the TP-Builder is capable of presenting code creation
hints like auto-completion. In addition, the FSM model and the Lua script syntax are
checked. The syntax check takes the selected microcontroller hardware target and
the host system configuration into account. Therefore, the TP-Builder is also used to
check the validity of a test plan before it is loaded onto the microcontroller hardware
target.

6.1.1 Prototype Test Applications Summary

In Chapter 5, the flexibility of the MoPS system architecture is demonstrated. The
same host software and microcontroller software are used to run the PFC test (Sec-
tion 5.3), the PoL test (Section 5.4), and the MicroMoPS test (Section 5.5).

During the evaluation of the PFC test application, the distributed architecture
proved to be capable of handling the requirements. Having multiple independent agents
that control smaller tasks are easier to configure, test and observe. The introduction
of the communicating FSMs enables sending messages also to the hardware targets.
This describes the extension of the actor framework to the microcontroller units.

During the execution of the PFC test procedure, several analog quantities are
measured (see Figure 6.1). The tested DUTs convert 1 kW each. The input voltage
is set to 200 V. The input current of the power converter and the temperature of
the converters DUTs are plotted. The values for the current are acquired with the
internal ADC module of the XMC4500 on the MicroMoPS hardware target. The
DUT temperatures are measured using delta-sigma modulators and acquired using
the DSD module of the microcontroller. We can observe that individual devices are
shut down by the guard module (see Section 3.5) as soon as an over-current event is
detected (usually because the semiconductor devices fail in a short circuit). Figure 6.1
shows such events: DUT5 fails after about 12 h test time. Before this event, a rise of
the DUT temperature can also be observed. The users need this kind of measurement
data to investigate the performance of the DUTs under real application conditions
without having to stop the test for off-line DUT characterizations. Feedback from the
MoPS system users has been very positive and confirms the benefits provided by the
software architecture presented in this thesis.

106

6.2 Discussion

0

2

4

6
in

pu
t

cu
rr

en
t

/
A

DUT1 DUT2 DUT3 DUT4 DUT5

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

time / h

D
U

T
te

m
pe

ra
tu

re
/

◦ C DUT1 DUT2 DUT3 DUT4 DUT5

Figure 6.1: PFC test measurements

6.2 Discussion

6.2.1 Usability

The users appreciate various features of the MoPS system architecture. First of all,
reading and storing measurements was mentioned as one of the key features of the
presented test system. The lab engineers appreciate using the system and creating
the test procedures using the Lua script language, which makes them not directly
dependent on the software engineers anymore. There is more effort required to create
the FSM structure than filling in a plain spreadsheet with test parameters for a
legacy test system (e.g. ACUTE). However, the users value the added functionality of
non-linear test procedures. The described Micro-MoPS hardware target is comparable
to a digital storage oscilloscope, albeit with higher resolution (12 bit) and lower
sample rate (100 kHz). However, the signal quality largely depends on the underlying
application boards. Furthermore, loading the test plan works properly and the speed
of prototyping test applications earns a very high satisfaction with our users. On the
other hand, we received feedback that downloading test plans to the hardware targets

107

6 Results & Discussion

could be faster. In addition, the GUI sometimes is considered to be not responsive
enough.

6.2.2 Host Performance

While executing the PFC stress test (see Section 5.3), the performance of the SAM
host application was evaluated. Rendering and displaying the FSM graphs as images
within the SAM host software (Section 5.2.3) turned out to be very slow. When
running a test plan with a few connected hardware targets, this behavior did not
impact the test execution. On the other hand, having more than 8 hardware targets
connected to one host caused severe performance issues. The FSM status images were
updated synchronously with the reception of the status messages from the hardware
targets. However, the LabVIEW application consumed the majority of the available
CPU time for rendering these images and meanwhile blocked the processing of further
messages to the respective Node Actor.

Therefore, a configuration option to disable the real-time update of the current
nodes’ FSM states is provided. In this case, a static image is displayed – the FSM
graph is drawn only once during loading of the test plan and is not updated during
run-time. The current FSM state is indicated in a text field on the GUI, thus the
user can still track the execution of the test procedure. Currently, we do not observe
any more scalability problems running 24 microcontroller targets with one single host
application.

6.2.3 Microcontroller Performance

On the XMCmicrocontroller, the closed loop PI control required for the test application
cannot be done in the Lua VM due to performance reasons. To achieve the required
100 kHz update rate for the PI control, the algorithms are implemented in C and are,
therefore, part of the firmware image. The flexibility during the run-time and test
execution is provided by setting the PI-controller’s parameters through the Lua API
of the PI-controller instance.

In addition, the measurement data acquisition is limited by missing features of the
DMA controller within the used XMC microcontroller. The DMA controller is used
to collect the measurements from the result registers and transfer them to the DRAM.
Unfortunately, it is not possible to write to a ring-buffer structure because the address
wrapping cannot be configured. The DMA controller is missing a compare register to

108

6.2 Discussion

check if the end address of the destination block has been reached in order to reset to
the start address of the destination block. Therefore, an ISR function has to be called
after each DMA transfer to perform this check using the main CPU impacting the
microcontroller application. As a result, the analog sampling rate is limited to about
200 kHz.

6.2.4 Lua Host Library

The PoL test heavily relies on instrument control. However, using the LuaVIEW library
(Section 2.3.2), the Lua interpreter was not reliable. As described in Section 5.2.1, an
error raised in the Lua script caused LuaVIEW to clean the complete Lua stack without
the possibility for a proper shutdown of the test. This triggered the investigations of
creating a custom Lua-based library for integration in LabVIEW (see Section 5.2.2).
According to our first tests, the proprietary library outperforms LuaVIEW by a factor
of 10 to 20.

6.2.5 Large Test Plans

The MicroMoPS test plan is very large with many states in the FSM and a lot of
Lua script code. Due to the limited microcontroller memory, it was not possible to fit
the total procedure onto the microcontroller. Therefore, the test program had to be
split into three separate programs: The first one tests the digital interfaces and the
remaining two test the analog interfaces. Meanwhile, a new chip of the XMC series
has been released: the XMC4700 features up to 352 KiB RAM – twice the amount of
the currently used XMC4500. However, a more complex program might still not fit
on these large microcontrollers. On the other hand, typical application tests do not
require all these functions at the same time. Furthermore, the available memory will
increase with future microcontroller devices.

6.2.6 Measurement Data Acquisition

Through the provided Lua API functions, the users can select the analog channels
they would like to use in their test application. The sampling frequency can easily be
configured and is only limited by the overall CPU time of the microcontroller ISR
handling the DMA transfers.

109

6 Results & Discussion

By switching from the CAN based communication channel to Ethernet, the effective
measurement data transmission rate has been improved by two orders of magnitude.
These results are attributed to the faster physical link speed (100 Mbit/s instead of
1 Mbit/s). Furthermore, the increased payload size of the transmitted packets results
in fewer packets required to send the measurement data to the host.

The modeling of the analog signal path (see Section 5.2.4) provides the possibility
to specify the individual gain functions of the modular components. When the raw
data is received at the SAM host software, it is automatically scaled and displayed on
the GUI (see Figure 6.2) and stored for offline evaluation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−3

0
0.5

1
1.5

2
2.5

3

time / s

vo
lta

ge
/

V

Figure 6.2: Analog data acquisition

110

7
Conclusion & Outlook

Science is the acceptance of
what works and the rejection of
what does not. That needs more
courage than we might think.

(Jacob Bronowski)

The task of this research project has been to integrate the components of a stress
test system (see Figure 1.1) into a framework that is capable of controlling

individual devices while collecting, displaying and storing measurement data. The
configuration of these actions (i.e. the system programming) must be easy and flexible.

7.1 Conclusion

Throughout this thesis, numerous problems have been investigated and solved in order
to provide a flexible way to create and update test software. A distributed architecture
– that allows integration of individual distributed control and measurement nodes (i.e.
the hardware targets) – has been created and its application has been demonstrated.
The flexibility of the MoPS system architecture is twofold.

• Configuration files are provided to set dependencies for external instruments.
Further, utilized tools can be set or removed depending on the users requirements.
Therefore, it is possible to change the test system in a simple way.

• The test procedures executed on the test system are designed according to the
FSM model. Within the FSM states, custom Lua script code can be defined.
Therefore, basically all kind of test procedures are possible. To provide even
more functionality, the Lua based API can easily be extended.

111

7 Conclusion & Outlook

By combining the configuration possibilities and the Lua scripting support with
hardware interaction on the embedded level, the MoPS test system provides a solid
development platform for power stress test applications. The configuration of such a
modular test system is straight forward. By using the JSON file format instead of
XML, the configuration data can be expressed in a clearer way. Reading this data is
simpler for both humans and machines.

The microcontroller firmware is created in a flexible way, so that it is possible
to use the Lua script and FSM functionality on any hardware target based on the
XMC4000 microcontroller family. By using C configuration files, the pin to name
assignment can be easily performed without the need to have a knowledge of the
DAVE development environment. The firmware image is currently flashed manually to
the target. However, through the means of Lua scripting and dynamically changeable
FSM structures, the firmware only needs to be updated when fixing a bug or when
adding new features.

While writing the test plan, the user can focus on the physical implementation of
the test application. High level Lua script commands are used instead of dealing with
the low-level microcontroller registers. Thus, the development of such test applications
has become much faster and easier while maintaining maximum flexibility.

7.2 Outlook

Even though the proposed architecture is working and being used for actual stress test
control, there are still several topics left for improvement and future investigations.
Since the main goal was to provide a functional system architecture, the real-time
requirements for the communication channel and the embedded microcontroller were
not in the key focus of this PhD project. To investigate possible improvements of
real-time capabilities on the hardware targets and synchronization between those
microcontrollers, a further research project has been recently started.

Furthermore, the usability of some tools leaves room for improvement. Especially
the configuration of a hardware target currently requires expert knowledge about the
internal structure of the used microcontroller. A future version of the MoPS-CORE
DAVE-App (see Section 4.1.4) that uses the DAVE scripting engine for the hardware
solver is already planned.

Due to performance reasons, the state change of the microcontroller FSM is only
polled by the host software. Unfortunately, this behavior results in larger delays for

112

7.2 Outlook

detecting specific states of the microcontroller and sending messages to switch to the
next state. However, we see the possibility of sending events from the microcontrollers
to the host application, thus eliminating the polling requirement.

Porting the firmware to any ARM Cortex-M based microcontroller or CPU is
possible. Switching to the latest XMC4700 microcontrollers to immediately gain an
increased memory and a faster CPU is a simple task. In addition, we will evaluate
the migration of our custom Lua modules to the Xilinx Zync processor embedded in
the NI System on Module1.

A topic that has not been dealt with in this thesis is the automated deployment
of firmware updates of the microcontroller. A boot loader for use with the Ethernet
communication channel will be implemented in the MoPS-CORE firmware in a
soon-to-start master thesis project.

The embedded measurement nodes (i.e. the microcontrollers) communicate over
standard Ethernet. Currently, the communication is not encrypted due to performance
and debugging reasons. If desired, encryption can be enabled on to the channel e.g.
by using DTLS. On the other hand, DoS are always possible on these microcontrollers.
Therefore, it is currently still mandatory to have separated networks between the
office LAN and the test system LAN to mitigate attack scenarios.

1http://www.ni.com/som

113

http://www.ni.com/som

Bibliography

[1] AEC-Q100 Failure Mechanism Based Stress Test Qualification for Integrated
Circuits, Automotive Electronics Council Std., Rev. H, Sep. 2014. [Online].
Available: http://www.aecouncil.com/AECDocuments.html 1, 2, 4, 54

[2] JESD22 Series - Reliability Test Methods for Packaged Devices, Accessed
2016-02-29, JEDEC Solid State Technology Association Std. [Online]. Available:
http://www.jedec.org 1, 2

[3] A. Steininger, “Testing and Built-in Self-Test – A Survey,” Journal of Systems
Architecture, vol. 46, no. 9, pp. 721–747, Jul. 2000. 1

[4] O. Bluder, M. Glavanovics, and J. Pilz, “Applying Bayesian mixtures-of-experts
models to statistical description of smart power semiconductor reliability,” Mi-
croelectronics Reliability, vol. 51, no. 9-11, pp. 1464–1468, 2011. 3

[5] O. Bluder, “Prediction of Smart Power Device Lifetime based on Bayesian
Modeling,” Ph.D. dissertation, Alpen-Adria-Universität Klagenfurt, 2011. 3

[6] K. Plankensteiner, O. Bluder, and J. Pilz, “Bayesian Network Model with Ap-
plication to Smart Power Semiconductor Lifetime Data,” Risk Analysis, 2015.
3

[7] K. Plankensteiner, “Predicting Censored Semiconductor Lifetimes with Bayesian
Regression Models Using Mixtures of Experts,” in Young Statisticians’ Meeting,
2011. 3

[8] Temperature, Bias, and Operating Life, JEDEC Solid State Technology Associa-
tion Std., Rev. D, Nov. 2010. 4

[9] K. T. Feng, L. Rushing, P. Canfield, and L. Flores, “Determination of reliability on
MOCVD grown InGaP/GaAs HBT’s under both thermal and current acceleration
stresses,” in Proceedings of the 2001 GaAs Reliability Workshop. IEEE, 2001,
pp. 159–180. 5

[10] S. Singhal, T. Li, A. Chaudhari, A. Hanson, R. Therrien, J. Johnson, W. Nagy,
J. Marquart, P. Rajagopal, J. Roberts, and et al., “Reliability of large periphery
GaN-on-Si HFETs,” Microelectronics Reliability, vol. 46, no. 8, pp. 1247–1253,
Aug. 2006. 5

115

http://www.aecouncil.com/AECDocuments.html
http://www.jedec.org

Bibliography

[11] H. Eder, “Development of a repetitive clamping test system hardware for smart
power switches,” Master’s thesis, Carinthia University of Applied Sciences, Villach,
Austria, 2006. 5

[12] M. Glavanovics, H. Köck, V. Košel, and T. Smorodin, “Flexible active cycle
stress testing of Smart Power switches,” in European Symposium on Reliability
of Electron Devices, Failure Physics and Analysis. Elsevier B.V., Radarweg 29,
1043 NX Amsterdam, The Netherlands, 2007. 5

[13] M. Glavanovics, H.-P. Kreuter, R. Sleik, and C. Schreiber, “Cycle Stress Test
Equipment for Automated Short Circuit Testing of Smart Power Switches Ac-
cording to the AEC Q100-012 Standard,” in Proceedings of the 13th European
Conference on Power Electronics and Applications, 2009. 5

[14] R. Sleik, “Investigation of Integrated Protection Functions in Smart Power
Switches based on the Development of an Advanced Control and Measurement
Interface,” Master’s thesis, Carinthia University of Applied Sciences, Villach,
2010. 5

[15] B. Steinwender, “In-situ characterization of smart power switches during cycle
stress testing,” Master’s thesis, Carinthia University of Applied Sciences, Villach,
2010. 5

[16] M. Bertocco, F. Ferraris, C. Offelli, and M. Parvis, “A Client-Server Architecture
for Distributed Measurement Systems,” IEEE Transactions on Instrumentation
and Measurement, vol. 47, no. 5, pp. 1143–1148, 1998. 6

[17] A. Pirker-Frühauf and M. Kunze, “A novel methodology to combine and speed-up
the verification process of simulation and measurement of integrated circuits,” in
Proceedings of the 2008 IEEE AUTOTESTCON Conference, 2008. 6

[18] A. Pirker-Frühauf, W. Gallent, M. Kunze, and G. Pelz, “Acceleration of IC
verification process using advanced flexible modular measurement systems and
software architectures,” in Proceedings of the 2008 IEEE Instrumentation and
Measurement Technology Conference. IEEE, 2008, pp. 1845–1847. 6

[19] B. Steinwender, S. Einspieler, M. Glavanovics, and W. Elmenreich, “Distributed
power semiconductor stress test & measurement architecture,” in Proceedings of
the 11th IEEE International Conference on Industrial Informatics, Jul. 2013, pp.
129–134. 6, 30, 31, 37, 41

116

Bibliography

[20] S. Einspieler, “Distributed Microcontroller Network for Smart Power Device
Life Testing and In-Situ Monitoring,” Master’s thesis, Alpen-Adria Universität,
Klagenfurt, 2013. 8, 38, 49

[21] G. Palatin, “Entwicklung eines intelligenten In-situ Testsystems zur Lebens-
daueruntersuchung von Power-MOSFETs,” Bachelor’s thesis, Carinthia Univer-
sity of Applied Sciences, 2013. 8

[22] ——, “Firmware eines intelligenten In-situ Testsystems zur Lebensdauerunter-
suchung von Power-MOSFETs,” Bachelor’s thesis, Carinthia University of Applied
Sciences, 2013. 8, 48

[23] K. Plankensteiner, “Test Plan Generation and Verification for a Modular Power
Stress Test System,” Master’s thesis, TU Graz, 2015. 8, 79

[24] G. Palatin, “User-Configurable Firmware Generation for a local Microcontroller
Node in a Modular Semiconductor Stress Test System,” Master’s thesis, Alpen-
Adria-Universität Klagenfurt, 2015. 8, 71

[25] S. Bauer, “Implementation of a Real-Time Environment for HTOL Qualification
Systems,” Master’s thesis, Alpen-Adria-Universität Klagenfurt, 2016, in writing.
8, 90

[26] J. Weigmann and G. Kilian, Decentralisation With Profibus DP/DPv1, 2nd ed.,
S. AG, Ed. Publicis Corporate, 2003. 11

[27] M. Felser, PROFIBUS Manual, 2012. 11

[28] Industrial communication networks - Fieldbus specifications, International Elec-
trotechnical Commission Std. 11, 17

[29] J. Ferreira and J. A. Fonseca, The Industrial EElectronic Handbook, second
edition – Industrial Communication Systems. CRC, 2011, ch. Controller Area
Network, p. 31. 11

[30] ISO 11898-2:2003: Road vehicles – Controller area network (CAN) – Part 2:
High-speed medium access unit, International Standards Organisation Std., 2003.
11

[31] Robert Bosch GmbH, “CAN Specification 2.0,” 1991. 11, 12

117

Bibliography

[32] F. Hartwich, “CAN with flexible Data-Rate,” in Internation CAN Conference,
2012. 12

[33] K. Tindell and A. Burns, “Guaranteeing message latencies on control area network
(CAN),” in Proceedings of the 1st International CAN Conference, 1994. 12

[34] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area Net-
work (CAN) schedulability analysis: Refuted, revisited and revised,” Real-Time
Systems, vol. 35, no. 3, pp. 239–272, Jan. 2007. 12

[35] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed., H. Michael,
Ed. Prentice Hall, 2010. 13, 14, 15

[36] ISO 15765-2:2011: Road vehicles – Diagnostic communication over Controller
Area Network (DoCAN) – Part 2: Transport protocol and network layer services,
International Standards Organisation Std., 2004. 13

[37] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded networking with CAN and
CANopen. Copperhill Media, 2008. 14

[38] S. Biegacki and D. VanGompel, “The application of DeviceNet in process control,”
ISA Transactions, vol. 35, no. 2, pp. 169–176, Jan. 1996. 14

[39] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for
Local Computer Networks,” Communications of the ACM, vol. 19, no. 7, pp.
395–404, Jul. 1976. 14, 16

[40] G. W. Brock, The Second Information Revolution, G. W. Brock, Ed. Harvard
University Press, 2003. 14

[41] S. Krywult and C. Steiner, “Survey on Present Real-Time Ethernet Solutions,”
2004. [Online]. Available: http://www.vmars.tuwien.ac.at/documents/intern/
2010/rt-ethernet.pdf 16

[42] G. Marsal and D. Trognon, The Industrial EElectronic Handbook, second edition
– Industrial Communication Systems. CRC, 2011, ch. Industrial Ethernet, p. 31.
16

[43] EtherCAT Technology Group, “EtherCAT - the Ethernet fieldbus,” Accessed
2016-02-12. [Online]. Available: http://ethercat.org 17

118

http://www.vmars.tuwien.ac.at/documents/intern/2010/rt-ethernet.pdf
http://www.vmars.tuwien.ac.at/documents/intern/2010/rt-ethernet.pdf
http://ethercat.org

Bibliography

[44] G. Cena, A. Valenzano, and C. Zunino, The Industrial EElectronic Handbook,
second edition – Industrial Communication Systems. CRC, 2011, ch. EtherCAT,
p. 38. 17

[45] S. Augarten, State of the Art. Ticknor & Fields, 1983, ch. The Most Widely
Used Computer on a Chip - The TMS 1000, p. 38. 18

[46] R. Obermaisser, P. Peti, W. Elmenreich, T. Losert, I. Wen, H. Kopetz, and
Clifford D. Fung, “Monitoring and configuration in a smart transducer network,”
in Proceedings of the IEEE Workshop on Real-Time Embedded Systems, 2001,
pp. 1–7. [Online]. Available: https://mobile.aau.at/~welmenre/papers/2001/
rr-11-2001.pdf 18

[47] W. Elmenreich and S. Pitzek, “Smart Transducers - Principles, Communications,
and Configuration,” in Proceedings of the 7th IEEE International Conference
on Intelligent Engineering Systems, 2003, pp. 510–515. [Online]. Available:
https://mobile.aau.at/~welmenre/papers/2003/rr-10-2003.pdf 18

[48] J. J. P. Tsai, K.-Y. Fang, and H.-Y. Chen, “A Noninvasive Architecture to
Monitor Real-Time Distributed Systems,” Computer, vol. 23, no. 3, pp. 11–23,
Mar. 1990. 18

[49] W. Elmenreich, “Time-Triggered Smart Transducer Networks,” IEEE Transac-
tions on Industrial Informatics, vol. 2, no. 3, pp. 192–199, Aug. 2006. 18

[50] E. Armengaud, A. Steininger, and M. Horauer, “Towards a Systematic Test
for Embedded Automotive Communication Systems,” IEEE Transactions on
Industrial Informatics, vol. 4, no. 3, pp. 146–155, Aug. 2008. 18

[51] W. Elmenreich, “Configuration and Management of Networked Embedded De-
vices,” in Networked Embedded Systems. Boca Raton, FL 33431, USA: CRC
Press, 2009, pp. 21–22. 18

[52] E. Schlunder. (2010) High-Speed Serial Bootloader for PIC16 and PIC18
Devices. AN1310. Accessed 2015-02-08. Microchip. [Online]. Available:
http://ww1.microchip.com/downloads/en/appnotes/01310a.pdf 19, 28

[53] J. Garcia-Zubia, I. Angulo, U. Hernandez, M. Castro, E. Sancristobal, P. Orduña,
J. Irurzun, and J. de Garibay, “Easily Integrable platform for the deployment of a
Remote Laboratory for microcontrollers,” in Proceedings of the IEEE EDUCON
2010 Conference. IEEE, Apr. 2010, pp. 327–334. 19

119

https://mobile.aau.at/~welmenre/papers/2001/rr-11-2001.pdf
https://mobile.aau.at/~welmenre/papers/2001/rr-11-2001.pdf
https://mobile.aau.at/~welmenre/papers/2003/rr-10-2003.pdf
http://ww1.microchip.com/downloads/en/appnotes/01310a.pdf

Bibliography

[54] eLua. Accessed 2015-02. [Online]. Available: http://www.eluaproject.net 19

[55] p14p - python-on-a-chip. Accessed 2015-02-08. [Online]. Available: https:
//code.google.com/p/python-on-a-chip 19

[56] T. W. Barr, “Microcontroller Programming for the Modern World,” Ph.D. dis-
sertation, Rice University, 2014. 19, 20

[57] D. George. (2015, Feb.) MicroPython. Accessed 2015-02-08. [Online]. Available:
http://micropython.org/ 19, 20

[58] G. van Rossum, Python Reference Manual, May 1995. [Online]. Available:
http://www.python.org 19

[59] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “The Implementation
of Lua 5.0,” Journal of Universal Computer Science, vol. 11, no. 7, pp. 1159–1176,
2005. 20

[60] R. Ierusalimschy, “Integers in Lua 5.3,” in Lua Workshop 2014, Moscow, Russia,
Sep. 2014. 20

[61] ——, “Programming with Multiple Paradigms in Lua,” in Functional and Con-
straint Logic Programming, ser. Lecture Notes in Computer Science, S. Escobar,
Ed. Springer Berlin Heidelberg, 2010, vol. 5979, pp. 1–12. 20

[62] ——, “Small is Beautiful: the Design of Lua,” in PPL Seminar, Stanford, CA,
Mar. 2012. 20, 21

[63] Standard Digital Interface for Programmable Instrumentation - Part 2: Codes,
Formats, Protocols and Common Commands (Adoption of (IEEE Std 488.2-1992),
IEEE Std. 22, 67

[64] National Instruments, “Actor Framework,” Nov. 2012. [Online]. Available:
http://ni.com/actorframework 22

[65] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for
artificial intelligence,” in Proceedings of the 3rd International Joint Conference
on Artificial intelligence. Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.
22

[66] LuaVIEW. Accessed 2015-11-16. [Online]. Available: http://luaview.tm-solutions.
eu 23

120

http://www.eluaproject.net
https://code.google.com/p/python-on-a-chip
https://code.google.com/p/python-on-a-chip
http://micropython.org/
http://www.python.org
http://ni.com/actorframework
http://luaview.tm-solutions.eu
http://luaview.tm-solutions.eu

Bibliography

[67] E. R. Gansner and S. C. North, “An open graph visualization system and its
applications to software engineering,” Software: Practice and Experience, vol. 30,
no. 11, pp. 1203–1233, 2000. 23

[68] A. Møller and M. Schwartzbach, An Introduction to XML And Web Technologies.
Pearson Education, 2006. 24, 25, 26

[69] The JSON Data Interchange Format, ECMA International Std. [Online].
Available: http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf 26

[70] F. Galiegue and K. Zyp, “JSON Schema: core definitions and terminology,”
Working Draft, IETF Secretariat, Internet-Draft draft-zyp-json-schema-04, Jan.
2013. 27

[71] I. Yabanova, S. Taskin, H. Ekiz, and H. Cimen, “Bootloader design application
for embedded systems by using controller area network,” Global Journal on
Technology, vol. 1, 2012. 28

[72] B. Steinwender, M. Glavanovics, and W. Elmenreich, “Executable Test Definition
for a State Machine Driven Embedded Test Controller Module,” in Proceedings
of the 13th IEEE International Conference on Industrial Informatics, 2015. 33,
64

[73] S. Bauer, “Log-File Management with Database Structures Using Object Oriented
Programming in LabVIEW,” Alpen-Adria-Universität Klagenfurt, Tech. Rep.,
Feb. 2016. 35

[74] P. Kruczkowski, “Controlling Shared Resources in Actor Oriented Systems,” in
European CLA Summit, 2016. 36

[75] H. Kopetz, “The three interfaces of a smart transducer,” Proceedings of FeT
’2001-4th IFAC International, vol. 2, 2001. 38

[76] W. Elmenreich, W. Haidinger, P. Peti, and L. Schneider, “New Node Integration in
TTP / A Networks,” Vienna University of Technology, Tech. Rep., 2001. [Online].
Available: https://mobile.aau.at/~welmenre/papers/2002/rr-05-2001.pdf 39

[77] N. Modadugu and E. Rescorla, “The Design and Implementation of Datagram
TLS,” in Proceedings of the Network and Distributed System Security Symposium,
2004. 42

121

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://mobile.aau.at/~welmenre/papers/2002/rr-05-2001.pdf

Bibliography

[78] C. Stuart and K. Marc, “Special-Use Domain Names,” Internet Requests for
Comments, Internet Engineering Task Force, RFC 6761, Feb. 2013. [Online].
Available: http://tools.ietf.org/html/rfc6761 42

[79] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack,” Swedish
Institute of Computer Science, Tech. Rep., 2001. 43, 125

[80] Internet Protocol, Request for Comments, Accessed 2015-11-04., University
of Southern California Std., Sep. 1981. [Online]. Available: https:
//tools.ietf.org/html/rfc791 43

[81] M. Nelhiebel, M. Glavanovics, B. Steinwender, R. Sleik, G. Glatte, and G. Palatin,
“Active Cycling Test of Smart Power Devices,” in ECPE Workshop on Intelligent
Reliability Testing, Dec. 2014. 48

[82] R. Sleik, M. Glavanovics, S. Einspieler, A. Muetze, and K. Krischan, “Modu-
lar Test System Architecture for Device, Circuit and System Level Reliability
Testing,” in Proceedings of the 31st annual IEEE Applied Power Electronics
Conference and Exposition. IEEE, Apr. 2016, pp. 759 – 765. 51, 53, 60, 100

[83] R. Ierusalimschy, Programming in Lua, 3rd ed., R. Ierusalimschy, Ed. Ierusalim-
schy, Roberto, 2013. 52, 57

[84] S. Pitzek and W. Elmenreich, “Configuration and management of a real-time
smart transducer network,” in Proceedings of the 2003 IEEE Conference on
Emerging Technologies and Factory Automation, vol. 1. IEEE, 2003, pp. 407–
414. 59

[85] A. E. Council, “AEC-Q100-012: Short Circuit Reliability Characterization of
Smart Power Devices for 12 V Systems,” Component Technical Committee, Tech.
Rep., 2006. [Online]. Available: http://www.aecouncil.com/AECDocuments.html
61

[86] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, Jun. 1987. 72

[87] J. Van Gurp and J. Bosch, “On the Implementation of Finite State Machines,”
in in Proceedings of the 3rd Annual IASTED International Conference Software
Engineering and Applications, IASTED/Acta, 1999, pp. 172–178. 72

[88] D. E. Knuth, Literate Programming, 1st ed., D. E. Knuth, Ed. The Center for
the Study of Language and Information Publications, 1992. 82

122

http://tools.ietf.org/html/rfc6761
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
http://www.aecouncil.com/AECDocuments.html

Bibliography

[89] S. Bauer, Y. Nikitin, and B. Steinwender, “Comparing the sbRIO-9651 to the
XMC4500 for a Real-Time Environment in HTOL Testing Systems,” in NIDays
2016. National Instruments, Mar. 2016. 90

[90] D. Egarter, A. Monacchi, M. Pöchacker, K. Schweiger, and B. Steinwender,
“Smart Grid: Vision & Herausforderungen,” in Energie – Interdisziplinäre Per-
spektiven auf eine knappe Ressource, ser. Klagenfurter Interdisziplinäres Kolleg,
G. Getzinger and H. P. Groß, Eds. Profil Verlag, 2014, no. 4. 95

123

Glossary

DAVE Digital Application Virtual Engineer – An Eclipse-based integrated develop-
ment environment for configuring, compiling and flashing software for XMC
micro-controllers. See http://dave.infineon.com

Git A version control system created by Linus Torvalds to maintain the Linux kernel
development. See http://git-scm.org

LabVIEW LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a
development environment used for instrument control and data acquisition using
a graphical programming language. See http://ni.com/labview

lwIP A lightweight IP stack for embedded systems [79]. See http://lwip.wikia.
com/wiki/LwIP_Wiki

National Instruments A United States company producing test and measurement
equipment and developing the LabVIEW software platform. See http://ni.com

125

http://dave.infineon.com
http://git-scm.org
http://ni.com/labview
http://lwip.wikia.com/wiki/LwIP_Wiki
http://lwip.wikia.com/wiki/LwIP_Wiki
http://ni.com

Acronyms

ACUTE Active Cycle Universal Test Equipment

ADC Analog-to-Digital Conversion

API Application Programming Interface

ARCTIS Advanced Repetitive Clamping Test Integrated System

ARM Advanced RISC Machines

ATE Automated Test Equipment

CAN Controller Area Network

COTS Commercial off-the-shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

CSMA/CD Carrier Sense Multiple Access / Collision Detection

DAQ Data AcQuisition

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DoS Denial-of-Service

DRAM Dynamic RAM

DSD Delta-Sigma Demodulator

DTD Document Type Declaration

127

Acronyms

DTLS Datagram Transport Layer Security

DUT Device Under Test

EDS Electronic Data Sheet

EtherCAT Ethernet for Control Automation Technology

FMS Fieldbus Message Specification

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPIB General Purpose Input Bus

GPIO General Purpose Input Output

GUI Graphical User Interface

HTOL High Temperature Operating Life

ID Identification

IO Input & Output

IP Internet Protocol

ISR Interrupt Service Routine

JSON JavaScript Object Notation

KAI Kompetenzzentrum Automobil- und Industrie-Elektronik

LAN Local Area Network

LED Light Emitting Diode

128

Acronyms

LXI LAN eXtensions for Instrumentation

MAC Medium Access Control

MoPS Modular Power Stress

NIC Network Interface Card

OSI Open Systems Interconnect

PCB Printed Circuit Board

PDO Process Data Object

PDU Protocol Data Unit

PFC Power Factor Correction

PI Proportional-Integral

PLC Programmable Logic Controller

PoL Point-of-Load

PROFIBUS PROcess FIeld BUS

PROFIBUS DP PROFIBUS Decentralised Peripherals

PROFIBUS PA PROFIBUS Process Automation

PSU Power Supply Unit

PWM Pulse Width Modulation

PXI PCI eXtensions for Instrumentation

RAM Random-Access Memory

RPC Remote Procedure Call

129

Acronyms

SAM Software Architecture for MoPS

SDO Service Data Object

SPI Serial Peripheral Interface

SPS Smart Power Switches

TCP Transmission Control Protocol

TP-Builder Test Plan Builder

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

URL Uniform Resource Locator

VI Virtual Instrument

VISA Virtual Instrument Software Architecture

VM Virtual Machine

XMC cross-market Microcontroller

XML eXtensible Markup Language

XVP eXecutable Verification Plan

130

RRR031

TB61H5G

business contact

private contact

Git version: 460ca75. Last change: Wed, 8 Jun 2016 18:31:48 +0200.

	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Evolution of Semiconductor Life Test Systems
	1.3.1 HTOL
	1.3.2 ACUTE / ARCTIS
	1.3.3 Distributed Measurement Systems
	1.3.4 MoPS

	1.4 Requirements
	1.5 Structure of the Thesis

	2 Concepts & Related Work
	2.1 Industrial Communication
	2.1.1 PROFIBUS
	2.1.2 CAN
	2.1.3 Ethernet
	2.1.4 EtherCAT

	2.2 Microcontrollers
	2.3 Programming Languages
	2.3.1 Code Interpreter
	2.3.2 LabVIEW
	2.3.3 Graphviz

	2.4 Markup Languages for Representing Test Configurations
	2.4.1 INI File
	2.4.2 XML
	2.4.3 JSON

	2.5 Software Deployment Strategies
	2.5.1 Compile-Flash-Cycle
	2.5.2 Boot Loader

	2.6 Chapter Summary

	3 The MoPS Distributed System
	3.1 Host Layer
	3.1.1 Software Architecture for MoPS
	3.1.2 MoPS Tiny Host

	3.2 Communication Channel
	3.2.1 Selection
	3.2.2 CAN-based Interface
	3.2.3 Ethernet-based Interface

	3.3 Distributed Control & Sense Node
	3.3.1 SmartMoPS
	3.3.2 HTOL Node Board
	3.3.3 DC-Converter Stress Board
	3.3.4 MicroMoPS

	3.4 The MoPS-CORE Microcontroller Firmware
	3.4.1 Lua Interpreter
	3.4.2 Hardware Interaction
	3.4.3 Background Routines
	3.4.4 Electronic Data Sheet

	3.5 Peripheral Modules
	3.6 Chapter Summary

	4 System Configuration & Programming
	4.1 Configuration Options
	4.1.1 JSON Format Enhancements
	4.1.2 SAM Configuration
	4.1.3 Configuring the MoPS-CORE Firmware
	4.1.4 DAVE MoPS-CORE App

	4.2 Test Plan Definition
	4.2.1 Test Plan Model
	4.2.2 Test Plan File Structure
	4.2.3 Test Plan Transformation & Transfer

	4.3 System Integration
	4.3.1 Communicating State Machines
	4.3.2 Test Plan Builder

	4.4 Software & Documentation Deployment
	4.5 Chapter Summary

	5 Prototype Implementations
	5.1 Test Plan Generation Work Flow
	5.2 Test Execution
	5.2.1 Lua Test Code
	5.2.2 MoPS Lua RPC Library
	5.2.3 FSM Visualization
	5.2.4 Measurement Data Acquisition
	5.2.5 Instrument Control

	5.3 Power Factor Correction Boost Converter
	5.3.1 Static Load Test
	5.3.2 Intermittent Load Test

	5.4 Point-of-Load Converter
	5.4.1 Static Load Test
	5.4.2 Dynamic Load Test

	5.5 MicroMoPS Test
	5.5.1 Test Procedure

	5.6 Chapter Summary

	6 Results & Discussion
	6.1 Results
	6.1.1 Prototype Test Applications Summary

	6.2 Discussion
	6.2.1 Usability
	6.2.2 Host Performance
	6.2.3 Microcontroller Performance
	6.2.4 Lua Host Library
	6.2.5 Large Test Plans
	6.2.6 Measurement Data Acquisition

	7 Conclusion & Outlook
	7.1 Conclusion
	7.2 Outlook

	Bibliography
	Glossary
	Acronyms

